
Online Appendix

Supplemental Material for “Information, Market
Power and Welfare”

Youcheng Lou∗ Rohit Rahi†

October 12, 2023

∗Academy of Mathematics and Systems Science, Chinese Academy of Sciences, No. 55 Zhongguancun
East Road, Beijing 100190, China.

†Department of Finance, London School of Economics, Houghton Street, London WC2A 2AE, U.K.



A1 Introduction

In this Online Appendix we provide some additional results. The numbers for equations,
lemmas and propositions correspond to those in the main paper, unless they are specific
to the Online Appendix, in which case the numbers are prefixed by an “A”.

A2 Equilibrium

Here we restate Lemma 3.3 and provide a proof.

Lemma 3.3 Suppose one of the following conditions is satisfied: (i) N I
i ≥ 2; (ii) N I

i ≥ 1
and R ≥ 0; or (iii) ρij = ρ for all i 6= j. Then R>i ηI/η

>
I RηI ≤ 1/2.

Proof We have
R>i ηI
η>I RηI

=
R>i ηI

N I
i R
>
i ηI +

∑
j 6=iN

I
jR
>
j ηI

. (A1)

We will invoke our standing assumptions that LI ≥ 2, and R>j ηI ≥ 0 for all j.

Condition (i): The sufficiency of this condition is immediate from (A1).

Condition (ii): If N I
i ≥ 2, condition (i) applies. If N I

i = 1, and all correlations are
nonnegative, we have
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.

Condition (iii): If all pairwise correlations are equal to ρ, we have

R>i ηI
η>I RηI

=
(1− ρ)N I

i + ρN I

(1− ρ)
∑

j(N
I
j )2 + ρ(N I)2

.

If N I
i ≥ 2, condition (i) applies. If N I

i is equal to 0 or 1, we have

R>i ηI
η>I RηI

≤ 1

N I

(1− ρ)N I
i + ρN I

(1− ρ) + ρN I
≤ 1

N I
≤ 1

2
.

This completes the proof. �

A3 Convergence to Competitive Equilibrium

The following result is used in the proof of Proposition 5.2:
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Lemma A3.1 In the economy parametrized by (ληI , ληU), λ ≥ 1, we have

lim
λ→∞

kφI(λ)

λ
= γ,

where γ is defined by (27).

Proof From (55), we have

0 =
kφI + 2

kφI + 1
− N I +NU

kφI + 1
λ+

∑
i∈LU

NU
i

[
gi(φ

I ;λ)

φI
− 1

]
λ

=
kφI + 2

kφI + 1
− N I +NU

kφI + 1
λ+

∑
i∈LU

NU
i

[
hi(φ

I ;λ)− λ
]
, (A2)

where

hi(φ
I ;λ) :=

gi(φ
I ;λ)λ

φI
= −bi(φ

I ;λ)λ

2kφI
+

√[
bi(φI ;λ)λ

2kφI

]2

+
kφI + 2

kφI(kφI + 1)
λ2. (A3)

Note that hi(φ
I ;λ) is strictly positive and satisfies

0 = [hi(φ
I ;λ)]2 +

bi(φ
I ;λ)λ

kφI
hi(φ

I ;λ)− kφI + 2

kφI(kφI + 1)
λ2

= hi(φ
I ;λ)

[
hi(φ
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η>I RηI

(
1 +

2

kφI

)
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2λ

kφI
− λ

kφI + 1

]
− kφI + 2

kφI(kφI + 1)
λ2
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[
hi(φ

I ;λ)− λ− R>i ηI
η>I RηI

(
1 +

2

kφI

)]
+

kφI + 2

kφI(kφI + 1)

[
hi(φ

I ;λ)− λ
]
λ.

Dividing both sides of this equation by hi(φ
I ;λ), and noting that λ/hi(φ

I ;λ) = φI/gi(φ
I ;λ),

we obtain

hi(φ
I ;λ)− λ =

[
1 +

kφI + 2

kφI(kφI + 1)

φI

gi(φI ;λ)

]−1
R>i ηI
η>I RηI

(
1 +

2

kφI

)
. (A4)

In the proof of Proposition 5.2, we established that φI →∞ as λ→∞. From (A3),

gi(φ
I ;λ)

φI
= −bi(φ

I ;λ)

2kφI
+

√[
bi(φI ;λ)

2kφI

]2

+
kφI + 2

kφI(kφI + 1)
.

Since bi(φ
I ;λ)/φI → −k, we see that gi(φ

I ;λ)/φI → 1, so that hi(φ
I ;λ)−λ→ R>i ηI/η

>
I RηI

from (A4). Now the result follows from (A2). �

The proof of Proposition 5.3 is analogous to that of Proposition 5.2. Here we restate
Proposition 5.3 and provide a full proof.

Proposition 5.3 (Convergence II) We have the following convergence results:

i. limλ→∞ E(ληI , ηU) = limλ→∞ Ê(ληI , ηU). Price informativeness does not depend on
λ, and φI and φU are strictly increasing in λ.

ii. Suppose R` ≥ 0. Then, limNI
`→∞

E(ηI , ηU) = limNI
`→∞

Ê(ηI , ηU).
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Proof Proof of (i): The depth parameter φI satisfies the following equation:

kφI + 2

kφI + 1
− λN I

kφI + 1
+
∑
i∈LU

NU
i

[
gi(φ

I ;λ)

φI
− kφI + 2

kφI + 1

]
= 0, (A5)

which is the same as (55), except that λ does not multiply NU
i . The proof that φI →∞,

φUi → ∞, αI → α̂I , and gi(φ
I ;λ)/φI → 1, is identical to that in Proposition 5.2. Using

the last of these results, it follows from (A5) that kφI/λ→ N I . Therefore, from (58) and
(59),

lim
λ→∞

αUi = k−1

[
1− R>i ηI

η>I RηI
N I

]
, and lim

λ→∞
p = (N I)−1η>I θ.

From (27), for the competitive economy parametrized by (ληI , ηU),

γ =
λN I +NU

1 +
∑

i∈LU N
U
i

R>i ηI
λη>I RηI

,

so that γ/λ→ N I . Using (26) and (30), we conclude that limλ→∞ α
U
i = limλ→∞ α̂

U
i and

limλ→∞ p = limλ→∞ p̂.
We establish the monotonicity properties in the same way as in the proof of Proposi-

tion 5.2. Here we have

f(φI(λ);λ) :=
φI

kφI + 1

[
(kφI + 2)− λN I

]
+
∑
i∈LU

NU
i

[
gi(φ

I ;λ)− φI kφ
I + 2

kφI + 1

]
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so that
∂f(φI(λ);λ)

∂λ
= − φI

kφI + 1
N I +

∑
i∈LU

NU
i

∂gi(φ
I , λ)

∂λ
< 0,

implying that φI is strictly increasing in λ. Also,

φU(φI(λ);λ) =
NU − 1

NU
φI
kφI + 2

kφI + 1
+
λN I

NU

φI

kφI + 1
,

from which we can conclude that φU is strictly increasing in λ. The result that price
informativeness does not depend on λ follows from (22).

Proof of (ii): We can write

R>i ηI
η>I RηI

=
ρi`N

I
` +

∑
j 6=` ρijN

I
j

N I
`

[
N I
` +

∑
j 6=` ρ`jN

I
j

]
+
∑

j 6=`N
I
j

[
ρj`N I

` +
∑

m6=` ρjmN
I
m

] . (A6)

Hence, if N I
` →∞,

R>i ηI
η>I RηI

→ 0. (A7)

By exactly the same arguments as in the proof of part (i), we can show that φI → ∞,
φUi →∞ for all i ∈ LU , αI → α̂I , and

kφI

N I
`

→ 1. (A8)
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Using (A6) and (A8),

R>i ηI
η>I RηI

kφI =
N I
`

[
ρi`N

I
` +

∑
j 6=` ρijN

I
j

]
N I
`

[
N I
` +

∑
j 6=` ρ`jN

I
j

]
+
∑

j 6=`N
I
j

[
ρj`N I

` +
∑

m6=` ρjmN
I
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] (kφI
N I
`

)
,

which converges to ρi`. From (15) and (A7), we conclude that αUi → k−1(1− ρi`) which,
from (30), is equal to limNI

`→∞
α̂Ui . Finally, from (16) and (A8),

p = (kφI + 2)−1
∑
i

N I
i θi =

(
kφI

N I
`

+
2

N I
`

)−1(
θ` +

∑
i6=`

N I
i

N I
`

θi

)
,

which converges to θ` as λ→∞. From (26) and (27), p̂ converges to θ` as well. �

A4 Market Size and Price Informativeness

In the paper we show that market size has no impact on price informativeness (Proposition
5.2), where we increase market size by scaling up (N I

i , N
U
i )i∈L. The purpose of this section

is to investigate the effect of market size on price informativeness when informed agents
in any given group have diverse information about their value for the asset. This allows
us to place the price informativeness result in our paper, and those in Vives (2011) and
Rostek and Weretka (2012, 2015), in a more general context.

We consider a generalization of the Rostek and Weretka (2012, 2015) model to allow
for multiple agents who have the same value for the asset. We call this the “differential
information model”. There are L groups, with the set of agents who belong to group i
denoted by Ni. We assume that #Ni = N for all i ∈ L. Agent n ∈ Ni observes a private
signal sin = θi + εin. There are no uninformed traders. All random variables are joint
normally distributed with zero mean. The values (θi)i∈L have a common variance σ2

θ , and
a correlation matrix R satisfying the“equicommonality” assumption, which means that
the average correlation of θi with {θj}j 6=i is the same for all i, i.e. (L− 1)−1

∑
j 6=i ρij = ρ̄,

for all i. The random variables (εin)i∈L,n∈Ni are mutually independent, independent of
(θi)i∈L, and have a common variance σ2

ε .
If we set N = 1 in the differential information model, we obtain the Rostek and

Weretka (2012, 2015) model. If, in addition, ρij = ρ for all i 6= j, we get the Vives (2011)
model. Taking the limit as σ2

ε goes to zero in the differential information model yields a
special case of the model in our paper, with N I

i = N and NU
i = 0 for all i ∈ L.

Rostek and Weretka (2012, 2015) postulate a function ρ̄(L), which describes how
the “commonality” parameter ρ̄ varies with L. The shape of this commonality function
depends on how heterogeneity in values arises (e.g. through differences in geographical
location or from group affiliations). In our discussion here we will focus on the baseline
case in which ρ̄ does not depend on L, which is also the case that corresponds to the
assumption of an unvarying correlation parameter in Vives (2011).

In our model, market size is measured by N , and price informativeness does not
depend on it. In Vives (2011) and Rostek and Weretka (2012, 2015) market size is
measured by L, and price informativeness is increasing in it (given that ρ̄ is constant).
With this in mind, we ask what happens to price informativeness in the differential
information model when N or L goes up. An increase in N means that there are more
agents in each group, each armed with their own signal about their own value. An increase

A5



in L, on the other hand, means that there are more groups, with their own values for the
asset, and signals about these values. We show that regardless of the notion of market
size, N or L, price informativeness can go up or down with market size. The reason is
that while there are more signals in a larger economy, from the perspective of any agent
in the economy, some of these signals contribute to price discovery, while other signals
add to the “noise” in prices. In this sense, the intuition is the same as in our main model,
where an increase in the number of informed agents in group i, which by itself increases
price informativeness for group i, is completely offset by the increase in the number of
informed agents in other groups, which adds noise to the price from the perspective of
group i. In the differential information model, these opposing effects are not exactly
offsetting in general, so price informativeness can increase or decrease.

We now proceed with the analysis of the differential information model. Due to the
symmetry assumptions of this model, including the equicommonality assumption, all
agents face the same depth parameter φ, and have the same strategies, given by

qin(sin, p) =
E(θi|sin, p)− p

k + φ−1
= µsin − αp,

for some coefficients µ and α. Using the market-clearing condition,
∑

i∈L
∑

n∈Ni qin = 0,
we can solve for the equilibrium price:

p = A
∑
i∈L

∑
n∈Ni

sin = A

[
N
∑
i∈L

θi +
∑
i∈L

∑
n∈Ni

εin

]
,

where A = µ/(αNL). Price informativeness is defined as follows:

ψ+ :=
Var(θi|sin)− Var(θi|sin, p)

Var(θi|sin)
. (A9)

This is the same definition and notation as in Rostek and Weretka (2012), and we also
follow their notation in defining σ2 := σ2

ε/σ
2
θ , which measures how noisy signals are. Due

to symmetry, ψ+ does not depend on i or n. For the limiting case of completely uninfor-
mative signals (σ2

ε → ∞), ψ+ is the same as Vi, the measure of price informativeness in
our paper (see (21)).

We first consider the same measure of market size as in the main paper, here applied
to the differential information model.

Proposition A4.1 (Price informativeness and N) Price informativeness ψ+ may be
increasing or decreasing in N . We have

i. ∂ψ+/∂N > 0 if ρ̄ ≥ 0.

ii. ∂ψ+/∂N < 0 if ρ̄ < 0 and sufficiently close to −(L− 1)−1.

Proof Using the normal projection theorem, we have

Var(θi|sin, p)

= σ2
θ −

[
σ2
θ Cov(θi, p)

] [ Var(sin) Cov(sin, p)
Cov(sin, p) Var(p)

]−1 [
σ2
θ

Cov(θi, p)

]
= σ2

θ −
1

Var(sin)Var(p)− [Cov(sin, p)]2
[
σ2
θ Cov(θi, p)

] [ Var(p) −Cov(sin, p)
−Cov(sin, p) Var(sin)

] [
σ2
θ

Cov(θi, p)

]
= σ2

θ −
σ4
θVar(p)− 2σ2

θCov(sin, p)Cov(θi, p) + Var(sin)[Cov(θi, p)]
2

Var(sin)Var(p)− [Cov(sin, p)]2
.
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Let C := 1 + (L − 1)ρ̄, and let 1 denote the L-vector each element of which is 1. Since
Var(1>θ) = σ2

θ1
>R1 = σ2

θL[1 + (L − 1)ρ̄] > 0, we must have C > 0 or equivalently,
ρ̄ > −(L− 1)−1. We have

Cov(θi, p) = σ2
θANC,

Cov(sin, p) = σ2
θA(NC + σ2),

Var(p) = σ2
θA

2NL(NC + σ2).

Note that L− C = (1− ρ̄)(L− 1). Therefore, we have

Var(θi|sin, p) = σ2
θ − σ2

θ

NL(NC + σ2)− 2N(NC + σ2)C + (1 + σ2)N2C2

(1 + σ2)NL(NC + σ2)− (NC + σ2)2

= σ2
θ − σ2

θ

N(L− C)(NC + σ2) + σ2NC(NC − 1)

(NC + σ2)
[
N(L− C) + σ2(NL− 1)

]
= σ2

ε

N2(L− C)C + σ2(NL− 1)

(NC + σ2)
[
N(L− C) + σ2(NL− 1)

]
= σ2

ε

(1− ρ̄)N2(L− 1)C + σ2(NL− 1)

(NC + σ2)
[
(1− ρ̄)N(L− 1) + σ2(NL− 1)

] .
Also,

Var(θi|sin) = σ2
θ −

σ4
θ

σ2
θ + σ2

ε

=
σ2
ε

1 + σ2
.

Hence, using the definition (A9), we have

ψ+ = 1− (1 + σ2)
(1− ρ̄)N2(L− 1)C + σ2(NL− 1)

(NC + σ2)
[
(1− ρ̄)N(L− 1) + σ2(NL− 1)

] . (A10)

Differentiating (A10), we obtain

∂ψ+

∂N
∝ −(NC + σ2)

[
(1− ρ̄)N(L− 1) + σ2(NL− 1)

][
2(1− ρ̄)N(L− 1)C + σ2L

]
+
[
(1− ρ̄)N2(L− 1)C + σ2(NL− 1)

]
·
[
(NC + σ2)

[
(1− ρ̄)(L− 1) + σ2L

]
+ C

[
(1− ρ̄)N(L− 1) + σ2(NL− 1)

]]
= (NC + σ2)(1− ρ̄)(L− 1)

[
−(1− ρ̄)N2(L− 1)C − σ2N(NL− 2)C − σ2

]
+ (1− ρ̄)N2(L− 1)C2

[
(1− ρ̄)N(L− 1) + σ2(NL− 1)

]
+ σ2(1− ρ̄)N(NL− 1)(L− 1)C + σ4(NL− 1)2C

= σ2(1− ρ̄)N(L− 1)C
[
(NC − 1) + (NL− 1)− (1− ρ̄)N(L− 1)

]
+ σ4

[
(1− ρ̄)(L− 1)(NC − 1)− (1− ρ̄)N(NL− 1)(L− 1)C + (NL− 1)2C

]
= σ2(1− ρ̄)N(L− 1)C

[
(NC − 1) + (N − 1) + ρ̄N(L− 1)

]
+ σ4

[
(1− ρ̄)(L− 1)(NC − 1) + ρ̄N(NL− 1)(L− 1)C + (N − 1)(NL− 1)C

]
.

Suppose ρ̄ ≥ 0. Then NC − 1 > (N − 1)C + (C − 1) > 0, and hence ∂ψ+/∂N > 0.
On the other hand, limC↓0(∂ψ+/∂N) < 0. Therefore, ∂ψ+/∂N < 0 when ρ̄ is sufficiently
close to its infimum, −(L− 1)−1. �
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The proposition says that price informativeness is increasing in market size, as measured
by N , when the correlation parameter ρ̄ is nonnegative. But when ρ̄ is sufficiently neg-
ative, a higher N adds more to the “noise” than to the “signal” in the price from the
perspective of any agent. This is because price is an ambiguous signal of value when
ρ̄ < 0. For an agent in group i, a higher price may be due to a higher θi (which is good
news) but may also be due to higher values of θj, j 6= i (which is bad news since ρ̄ < 0).
Negative correlations can arise due to hedging motives (see Rahi and Zigrand (2018) for
an example).

Next, we look at the case where market size is measured by the number of groups, L.

Proposition A4.2 (Price informativeness and L) Price informativeness ψ+ may be
increasing or decreasing in L. We have the following results:

i. Suppose N = 1. Then ∂ψ+/∂L ≥ 0. If, in addition, ρ̄ 6= 0, then ∂ψ+/∂L > 0.

ii. Suppose N ≥ 2. Then ∂ψ+/∂L > 0 if ρ̄ ≥ 1/2 and σ2ρ̄ ≥ N − 1.

iii. Suppose N ≥ 2. Then ∂ψ+/∂L < 0 if ρ̄ = 0.

iv. Suppose N ≥ 3. Then ∂ψ+/∂L < 0 if ρ̄ ≥ −[2(L− 1)]−1, and σ2 ≤ (1− ρ̄)(N − 2).

Proof Differentiating (A10) with respect to L, we have

∂ψ+

∂L
∝ −(NC + σ2)

[
(1− ρ̄)N(L− 1) + σ2(NL− 1)

][
(1− ρ̄)N2[C + (L− 1)ρ̄] + σ2N

]
+
[
(1− ρ̄)N2(L− 1)C + σ2(NL− 1)

]
·
[
(NC + σ2)(1− ρ̄+ σ2)N + ρ̄N

[
(1− ρ̄)N(L− 1) + σ2(NL− 1)

]]
∝ −(1− ρ̄)(NC + σ2)

[
ρ̄(1− ρ̄)N2(L− 1)2 + σ2(N − 1)(NC − 1) + σ2ρ̄N(L− 1)(NL− 1)

]
+ ρ̄
[
(1− ρ̄)2N3(L− 1)2C + σ2(1− ρ̄)N(L− 1)(NL− 1)(NC + 1) + σ4(NL− 1)2

]
∝ ρ̄(1− ρ̄)N(L− 1)(NL− 1)− (1− ρ̄)N(N − 1)(NC − 1)C − ρ̄(1− ρ̄)2N2(L− 1)2

+ σ2ρ̄(NL− 1)2 − σ2(1− ρ̄)(N − 1)(NC − 1)− σ2ρ̄(1− ρ̄)N(L− 1)(NL− 1)

= −(1− ρ̄)N(N − 1)2 − 2ρ̄(1− ρ̄)N(N − 1)2(L− 1)− ρ̄2(1− ρ̄)N2(N − 2)(L− 1)2

+ σ2
[
(2ρ̄− 1)(N − 1)2 + ρ̄2N2(L− 1)2 + 2ρ̄2N(N − 1)(L− 1)

]
= (N − 1)2

[
σ2(2ρ̄− 1)− (1− ρ̄)N

]
+ 2ρ̄N(N − 1)(L− 1)

[
σ2ρ̄− (1− ρ̄)(N − 1)

]
+ ρ̄2N2(L− 1)2

[
σ2 − (1− ρ̄)(N − 2)

]
.

We denote the last expression by H. We establish that H has the desired sign for each
result in the proposition.

Proof of (i): If N = 1, it is immediate that H ≥ 0, where the inequality is strict if and
only if ρ̄ 6= 0.

Proof of (ii): Suppose N ≥ 2. Using the conditions ρ̄ ≥ 1/2 and σ2ρ̄ ≥ N − 1, we have

ρ̄H ≥ (N − 1)2
[
(N − 1)(2ρ̄− 1)− ρ̄(1− ρ̄)N

]
+ 2ρ̄2N(N − 1)(L− 1)

[
(N − 1)− (1− ρ̄)(N − 1)

]
+ ρ̄2N2(L− 1)2

[
(N − 1)− ρ̄(1− ρ̄)(N − 2)

]
> −ρ̄(1− ρ̄)N(N − 1)2 + 2ρ̄3N(N − 1)2

≥ 0,
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and hence H > 0, as desired.

Proof of (iii): If N ≥ 2 and ρ̄ = 0, it is immediate that H < 0.

Proof of (iv): Suppose N ≥ 3, and σ2 ≤ (1 − ρ̄)(N − 2). If ρ ≥ 0, then it is immediate
that H < 0 (note that 2ρ̄ − 1 < 1). If −[2(L − 1)]−1 ≤ ρ̄ < 0, a different argument is
needed. First, observe that

H ≤ H1(ρ̄) := (N−1)2
[
σ2(2ρ̄−1)−(1− ρ̄)N

]
+2ρ̄N(N−1)(L−1)

[
σ2ρ̄−(1− ρ̄)(N−1)

]
.

It is straightforward to check that H ′′1 (ρ̄) > 0. Furthermore, H1(0) < 0, and

H1

(
−[2(L− 1)]−1

)
∝ −(N − 1)

[
σ2 +N +

2σ2 +N

2(L− 1)

]
+N

[
N − 1 +

σ2 +N − 1

2(L− 1)

]
∝ −σ2

[
2(N − 1)L−N

]
< 0.

Invoking the convexity of H1(ρ̄), we conclude that H1(ρ̄) < 0 if −[2(L − 1)]−1 ≤ ρ̄ < 0,
and hence H < 0 for ρ̄ in this interval. This completes the proof. �

The proposition describes how price informativeness is impacted by market size, as mea-
sured by L. If N = 1, price informativeness goes up with market size. This is the price
informativeness result of Rostek and Weretka (2012, 2015) for the case of a constant
commonality function ρ̄(L). However, when there are multiple informed agents in each
group, price informativeness is decreasing in market size if ρ̄ = 0. In this case, adding
another group adds noise to the price for the existing groups, while not adding any useful
information. In fact, for relatively precise signals, price informativeness falls with market
size for any nonnegative ρ̄ (and also for a range of negative values of ρ̄). In order to
recover the Rostek and Weretka (2012, 2015) result for N ≥ 2, we need correlations that
are relatively high and signals that are relatively noisy.

Why does the relationship of price informativeness to market size change so dramat-
ically when we go from N = 1 to N ≥ 2? Consider the inference problem of an agent in
group i. This agent seeks to learn θi from the equilibrium price, which is proportional
to the sum of all signals in the economy. The part of the price that is potentially most
informative about θi is the sum of the signals of other agents in group i (and there are
some such agents only when N ≥ 2). The signals of agents in groups j 6= i cloud this
information. Increasing the number of groups clouds it even further.

It seems counter-intuitive at first glance that an increase in market size lowers price
informativeness when signals are relatively precise. This is because the accuracy of signals
applies not only to the new signals that are added when the market grows in size, but
also to the existing signals. If the existing signals already convey a lot of information,
the scope of price discovery from the additional signals is lower.

A5 Welfare

The following result appears in Proposition 7.2:

Lemma A5.1 Consider an F1-economy parametrized by ληI , λ ≥ 1. Suppose N I
1 ≥ 4.

Then U Ii (ληI)− UUi (ληI) is strictly increasing in λ, for all i ∈ LI ∩ LU .
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Proof Let ∆Ui := U Ii − UUi . Note that Vi and Gi do not depend on λ, ∂φI/∂λ > 0, φUi
depends on λ only through φI (see (78) and (79)), and F ′(x) = 2(kx + 1)−3, from (32).
Hence, from (33), (34), (43), (79), (80) and (81), we have

∂(∆Ui)
∂λ

∝ GiF
′(φI)−

[
Gi − (1− Vi)

]
F ′(φUi )

∂φUi
∂φI

≥ Gi

[
F ′(φI)− F ′(φUi )

∂φUi
∂φI

]
∝ F ′(φI)− F ′(φUi )

∂φUi
∂φI

=
2

(kφI + 1)3
− 2

(kφUi + 1)3

(kφUi + 1) ∂Φ
∂φI

2kφUi + bi

≥ 2

(kφI + 1)3
− 2

(kφI + 1)2(2kφUi + bi)

∂Φ

∂φI

∝ (2kφUi + bi)− (kφI + 1)
∂Φ

∂φI

∝ (2kφUi + bi)
2 − (kφI + 1)2

(
∂Φ

∂φI

)2

= b2
i + 4kφI

kφI + 2

kφI + 1
− (kφI + 1)2

(
1 +

1

(kφI + 1)2

)2

= 4 +

(
kφI

kφI + 2

kφI + 1

)2

+

(
R>i ηI
R>1 ηI

)2

− 2
R>i ηI
R>1 ηI

(
2− kφI kφ

I + 2

kφI + 1

)
−
(
kφI + 1 +

1

kφI + 1

)2

=

(
R>i ηI
R>1 ηI

)2

− 2
R>i ηI
R>1 ηI

(
2− kφI kφ

I + 2

kφI + 1

)
.

By the definition of an F1-economy, R>j ηI > 0 for all j ∈ LI . Hence, ∂(∆Ui)/∂λ > 0 if

kφI
kφI + 2

kφI + 1
≥ 2. (A11)

Using (36),

kφI + 2 = λ
η>I RηI
R>1 ηI

≥ η>I RηI
R>1 ηI

> N I
1 .

Since kφI(kφI + 2)/(kφI + 1) is strictly increasing in φI ,

kφI
kφI + 2

kφI + 1
> (N I

1 − 2)
N I

1

N I
1 − 1

.

The right hand side of this inequality is increasing in N I
1 . Therefore, if N I

1 ≥ 4, (A11) is
satisfied. This completes the proof. �

A6 CARA Utility

In this section we consider an economy in which agents have constant absolute risk aver-
sion, with a common risk aversion coefficient r, instead of linear utility with a quadratic
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holding cost as in the main model. In order to ensure that the conditional variance of
the asset payoff is positive for all agents, we assume that the value of the asset for group
i is vi := θi + ζi, where the random variables {ζi}i∈L are i.i.d. normal, with variance σ2

ζ ,
and independent of all other random variables. The wealth of an agent in group i, given
an asset position qi, is Wi = (vi − p)qi. Informed agents in group i privately observe θi.
Let

kI := rσ2
ζ , kUi := kI + rσ2

θ

[
1− (R>i ηI)

2

η>I RηI

]
.

We show that, with the exception of Proposition 6.2, all the results in the main model
continue to hold with minor modifications. Essentially, the only difference is that the
parameter k is replaced by kI for an informed agent and by kUi for an uninformed agent
in group i.

We have the following analog of Proposition 3.1:

Proposition A6.1 (Demands and prices for given depths) The depth parameters
for informed agents are the same for all groups: φIi = φI for all i ∈ LI . Given φI and
{φUi }i∈LU , agents’ demand functions are

qIi = αI(θi − p), i ∈ LI ,

qUi =
φUi

kUi φ
U
i + 1

[
E(θi|p)− p

]
= −αUi p, i ∈ LU ,

where

αI = Φ− φI =
φI

kIφI + 1
,

αUi = Φ− φUi

=
φUi

kUi φ
U
i + 1

[
1− σθip

σ2
p

]
=

φUi
kUi φ

U
i + 1

[
1− R>i ηI

η>I RηI
(kIφI + 2)

]
. (A12)

The price function is given by

p = (kIφI + 2)−1η>I θ,

and market depth is

Φ = φI
kIφI + 2

kIφI + 1
. (A13)

Proof Consider an agent in group i. His information at the time of trade is Ii, where
Ii := (θi, p) if he is informed, and Ii := p if he is uninformed. The depth parameter that
he faces is φi, which is equal to φIi if he is informed and φUi if he is uninformed. Also
associated with this agent is the parameter ki := rVar(vi|Ii). He chooses qi to maximize
the mean-variance criterion Ui given by

Ui := E(Wi|Ii)−
r

2
Var(Wi|Ii)

=
[
E(θi|Ii)− p

]
qi −

r

2
Var(vi|Ii)q2

i

=
[
E(θi|Ii)− p

]
qi −

ki
2
q2
i . (A14)
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The first-order condition is

E(θi|Ii)− p− φ−1
i qi − kiqi = 0, (A15)

which yields the optimal portfolio

qi =
E(θi|Ii)− p
ki + φ−1

i

=
φi

kiφi + 1

[
E(θi|Ii)− p

]
. (A16)

For an informed agent (i ∈ LI), we have

E(θi|Ii) = θi, (A17)

and
ki = rVar(θi + ζi|θi) = rσ2

ζ = kI , (A18)

and hence

qIi =
φIi

kIφIi + 1
(θi − p).

Noting that the analysis in Section 3 of the paper that precedes the definition of equi-
librium still applies, we can use the same reasoning as in the proof of Proposition 3.1 to
show that φIi = φI for all i ∈ LI . Thus we have the desired expressions for qIi and αI .

The formulas for p and Φ follow from the same arguments as in the proof of Proposition
3.1. For an uninformed agent (i ∈ LU),

E(θi|p) =
σθip
σ2
p

p =
R>i ηI
η>I RηI

(kIφI + 2)p, (A19)

and

ki = rVar(θi + ζi|p) = r

[
σ2
ζ + σ2

θ −
σ2
θip

σ2
p

]
= kI + rσ2

θ

[
1− (R>i ηI)

2

η>I RηI

]
= kUi , (A20)

and hence qUi = −αUi p, where αUi is given by (A12). �

As in the main model, an equilibrium can be described in reduced form as depth
parameters (φI , φU1 , . . . , φ

U
LU

) ∈ RLU+1
++ that solve the following equations (which are anal-

ogous to (19) and (20)):∑
i∈LU

NU
i

[
φI
kIφI + 2

kIφI + 1
− φUi

]
=

φI

kIφI + 1

[
(kIφI + 2)−N I

]
, (A21)

φI
kIφI + 2

kIφI + 1
= φUi

1− R>i ηI
η>I RηI

(kIφI + 2)

kUi φ
U
i + 1

+ 1

 , i ∈ LU . (A22)

Thus the price function and the equations for the depth parameters take the same form as
in the main model, with the parameter k being replaced by kI for informed agents, and by
kUi for uninformed agents in group i. Moreover, these parameters are exogenous, so our
existence result, Proposition 3.2, still applies. Proposition 4.1 on price informativeness
also holds. Using (22), we have

kUi = kI + rσ2
θ(1− Vi). (A23)

The results on depths and slopes need to be modified.
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Proposition A6.2 (Depths) The depth parameters φI and {φUi }i∈LU satisfy the follow-
ing properties:

i. φUi > φI for all i ∈ LU .

ii. φUi = φUj if Vi = Vj. Furthermore, if σ2
ζ ≥ σ2

θη
>
I RηI/8, then φUi = φUj if and only if

Vi = Vj, and φUi > φUj if and only if Vi > Vj.

iii. If NU = 0, then kIφI + 2 = N I . If NU ≥ 1, then kIφI + 2 < N I +NU .

Proof From (A22),

φUi
kUi φ

U
i + 2

kUi φ
U
i + 1

− φI k
IφI + 2

kIφI + 1
=

R>i ηI
η>I RηI

(kIφI + 2)
φUi

kUi φ
U
i + 1

.

Note that the left-hand side is nonnegative, and x(kx+ 2)/(kx+ 1) is strictly increasing
in x and strictly decreasing in k. Since kUi > kI , we can conclude that φUi > φI for all
i ∈ LU . The result in part (i) follows.

From the above equation,

kUi φ
U
i + 2−

[
kUi + (φUi )−1

]
φI
kIφI + 2

kIφI + 1
=

R>i ηI
η>I RηI

(kIφI + 2).

Since kUi = kI + rσ2
θ(1−Vi), it follows that φUi = φUj if Vi = Vj. In order to establish the

result that depths are ranked by price informativeness, we fix an equilibrium of a given
economy (in particular, we fix φI , σ2

p and η>I RηI), and consider different hypothetical
values of R>i ηI , and hence of βi, defined by

βi :=
σθip
σ2
p

=
R>i ηI
η>I RηI

(kIφI + 2). (A24)

A higher value of βi is associated with a higher value of Vi. From (A13) and (A22), φUi
solves

kUi (φUi )2 + biφ
U
i − Φ = 0, (A25)

where
bi = 2− βi − kUi Φ, (A26)

and

kUi = kI + rσ2
θ

[
1− β2

i

η>I RηI
(kIφI + 2)2

]
= kI + r(σ2

θ − β2
i σ

2
p).

Differentiating (A25) with respect to βi, we get

2kUi φ
U
i

∂φUi
∂βi

+ (φUi )2∂k
U
i

∂βi
+ bi

∂φUi
∂βi

+ φUi
∂bi
∂βi

= 0,
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so that

∂φUi
∂βi

= − φUi
2kUi φ

U
i + bi

[
φUi
∂kUi
∂βi

+
∂bi
∂βi

]
=

φUi
2kUi φ

U
i + bi

[
1 + (Φ− φUi )

∂kUi
∂βi

]
=

φUi
2kUi φ

U
i + bi

[
1− 2rαUi βiσ

2
p

]
=

φUi
2kUi φ

U
i + bi

[
1−

2rφUi (1− βi)βiσ2
p

kUi φ
U
i + 1

]
.

From (A25), kUi φ
U
i + bi > 0. Also, φUi /(k

U
i φ

U
i + 1) < 1/kUi < 1/kI , (1− βi)βi ≤ 1/4, and

σ2
p = σ2

θη
>
I RηI(k

IφI + 2)−2 < σ2
θη
>
I RηI/4. Therefore,

∂φUi
∂βi
∝ 1−

2rφUi (1− βi)βiσ2
p

kUi φ
U
i + 1

> 1− rσ2
θη
>
I RηI

8kI

∝ σ2
ζ −

σ2
θη
>
I RηI
8

.

The result in part (ii) follows. The proof of part (iii) is analogous to that of Proposition
4.2 (iii). �

Proposition A6.3 (Slopes) The slope parameters αI and {αUi }i∈LU satisfy the follow-
ing properties:

i. αI > 0.

ii. αUi < αI for all i ∈ LU .

iii. αUi = αUj if Vi = Vj. Furthermore, if σ2
ζ ≥ σ2

θη
>
I RηI/8, then αUi = αUj if and only if

Vi = Vj, and αUi < αUj if and only if Vi > Vj.

The slope parameters also satisfy properties (iv)–(vii) in Proposition 4.3.

Proposition A6.3 follows from Proposition A6.2 and from the arguments in Proposition
4.3. There are two differences in the results on depths and slopes compared to those in
the main model. First, in order to rank depths and slopes by price informativeness we
need a lower bound on σ2

ζ (this ensures that kUi is not too large relative to kI). This way
of ranking depths and slopes is useful for interpretation, but is not needed for any other
results. Second, the inequalities in Proposition A6.2 (i) and (iii) and Proposition A6.3
(ii) are strict because kUi > kI for all i ∈ LU . This second difference also accounts for the
following modification of Lemma 4.4:

Lemma A6.4 (Naive economy) If all uninformed agents are naive, they have the
same depth and slope parameters: φUi = φU > φI , and αUi = αU < αI , for all i ∈ LU .

The analog of Proposition 5.1 is as follows:
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Proposition A6.5 (Competitive equilibrium) In a competitive economy with the mass
of agents given by {N I

i , N
U
i }i∈L, the price function is

p̂ = γ−1η>I θ,

where

γ :=
N I +

∑
i∈LU N

U
i
kI

kUi

1 +
∑

i∈LU N
U
i
kI

kUi

R>i ηI
η>I RηI

, (A27)

and the slope parameters are

α̂I = (kI)−1,

α̂Ui = (kUi )−1

[
1− σθip̂

σ2
p̂

]

= (kUi )−1

[
1− R>i ηI

η>I RηI
γ

]
, i ∈ LU .

The slope parameters satisfy all the properties in Proposition A6.3.

We need the following analog of Lemma A3.1:

Lemma A6.6 In the economy parametrized by (ληI , ληU), λ ≥ 1, we have

lim
λ→∞

kIφI(λ)

λ
= γ,

where γ is defined by (A27).

Proof From (A22), φUi solves

kUi (φUi )2 + bi(φ
I ;λ)φUi − φI

kIφI + 2

kIφI + 1
= 0,

where

bi(φ
I ;λ) = 2− R>i ηI

λη>I RηI
(kIφI + 2)− kUi φI

kIφI + 2

kIφI + 1
.

The solution is given by

φUi = gi(φ
I ;λ) =

−bi(φI ;λ) +
√
b2
i (φ

I ;λ) + 4kUi φ
I k

IφI+2
kIφI+1

2kUi
. (A28)

From (A21),

0 =
kIφI + 2

kIφI + 1
− N I

kIφI + 1
λ+

∑
i∈LU

NU
i

[
gi(φ

I ;λ)

φI
− kIφI + 2

kIφI + 1

]
λ (A29)

=
kIφI + 2

kIφI + 1
−
N I +

∑
i∈LU N

U
i
kI

kUi

kIφI + 1
λ+

∑
i∈LU

NU
i

[
gi(φ

I ;λ)

φI
− kIφI + 2

kIφI + 1
+

kI

kUi (kIφI + 1)

]
λ

=
kIφI + 2

kIφI + 1
−
N I +

∑
i∈LU N

U
i
kI

kUi

kIφI + 1
λ+

∑
i∈LU

NU
i Hi(φ

I ;λ), (A30)
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where

Hi(φ
I ;λ) := hi(φ

I ;λ)− kIφI + 2

kIφI + 1
λ+

kI

kUi (kIφI + 1)
λ,

hi(φ
I ;λ) :=

gi(φ
I ;λ)λ

φI
= −bi(φ

I ;λ)λ

2kUi φ
I

+

√[
bi(φI ;λ)λ

2kUi φ
I

]2

+
kIφI + 2

kUi φ
I(kIφI + 1)

λ2 .

Note that hi(φ
I ;λ) is strictly positive and satisfies

0 = [hi(φ
I ;λ)]2 +

bi(φ
I ;λ)λ

kUi φ
I

hi(φ
I ;λ)− kIφI + 2

kUi φ
I(kIφI + 1)

λ2

= hi(φ
I ;λ)

[
hi(φ

I ;λ) +
2λ

kUi φ
I
− R>i ηI
η>I RηI

(
kI

kUi
+

2

kUi φ
I

)
− kIφI + 2

kIφI + 1
λ

]
− kIφI + 2

kUi φ
I(kIφI + 1)

λ2

(A31)

= hi(φ
I ;λ)

[
Hi(φ

I ;λ)− R>i ηI
η>I RηI

(
kI

kUi
+

2

kUi φ
I

)
+

kIφI + 2

kUi φ
I(kIφI + 1)

λ

]
− kIφI + 2

kUi φ
I(kIφI + 1)

λ2.

Dividing both sides of this equation by hi(φ
I ;λ), and noting that λ/hi(φ

I ;λ) = φI/gi(φ
I ;λ),

we obtain

Hi(φ
I ;λ) =

R>i ηI
η>I RηI

(
kI

kUi
+

2

kUi φ
I

)
+

kIφI + 2

kUi φ
I(kIφI + 1)

(
φI

gi(φI ;λ)
− 1

)
λ.

Using the arguments in Proposition 5.2, we can show that φI → ∞ as λ → ∞. From
(A28),

gi(φ
I ;λ)

φI
= −bi(φ

I ;λ)

2kUi φ
I

+

√[
bi(φI ;λ)

2kUi φ
I

]2

+
kIφI + 2

kUi φ
I(kIφI + 1)

.

Since bi(φ
I ;λ)/φI → −kUi , we see that gi(φ

I ;λ)/φI → 1. Moreover λ/φI is bounded (we

prove this below). Therefore, Hi(φ
I ;λ)→ kI

kUi

R>i ηI
η>I RηI

. Now the result follows from (A30).

It remains to show that λ/φI is bounded. From (A31),

0 = hi(φ
I ;λ)

[
hi(φ

I ;λ)− λ− R>i ηI
η>I RηI

(
kI

kUi
+

2

kUi φ
I

)
+

2λ

kUi φ
I
− λ

kIφI + 1

]
− kIφI + 2

kUi φ
I(kIφI + 1)

λ2

= hi(φ
I ;λ)

[
hi(φ

I ;λ)− λ− R>i ηI
η>I RηI

(
kI

kUi
+

2

kUi φ
I

)
+

kI − kUi
kUi (kIφI + 1)

λ

]
+

kIφI + 2

kUi φ
I(kIφI + 1)

[
hi(φ

I ;λ)− λ
]
λ.

Dividing both sides of this equation by hi(φ
I ;λ), and noting that λ/hi(φ

I ;λ) = φI/gi(φ
I ;λ),

we obtain

hi(φ
I ;λ)− λ =

[
1 +

kIφI + 2

kUi φ
I(kIφI + 1)

φI

gi(φI ;λ)

]−1 [
R>i ηI
η>I RηI

(
kI

kUi
+

2

kUi φ
I

)
− kI − kUi
kUi (kIφI + 1)

λ

]
.

From (A29),
kIφI + 2

kIφI + 1
− N I +NU

kIφI + 1
λ+

∑
i∈LU

NU
i

[
hi(φ

I ;λ)− λ
]

= 0.
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From the above two equations, we can show by contradiction that λ/φI is bounded. This
completes the proof. �

Using Lemma A6.6, we can show that Proposition 5.2 holds. Propositions 5.3 and 5.4
also hold. The proofs are along the same lines as those in the paper.

Next, we turn to welfare analysis. It is convenient to use the following monotonic
transformation of ex ante expected utility for an agent in group i:

Ui :=
1

2r

([
E(exp(−rWi)

]−2 − 1
)
, (A32)

where Wi = (vi − p)qi. We define

F (k, x) :=
x(kx+ 2)

(kx+ 1)2
, (A33)

which is the same as the definition of the function F in the paper (see (32)), except
that here we allow F to depend on k in addition to x. Gains from trade for group i are
Gi := σ2

θi−p/σ
2
θ as in the main model.

Lemma A6.7 (Utilities) Ex ante utilities are given by

U Ii =
σ2
θ

2
F (kI , φI)Gi, i ∈ LI ,

UUi =
σ2
θ

2
F (kUi , φ

U
i )
[
Gi − (1− Vi)

]
, i ∈ LU . (A34)

Proof For an agent in group i,

E
[
− exp(−rWi)

]
= −E

[
E(exp(−rWi)|Ii)

]
= −E

[
exp(−rUi)

]
,

where Ui is the mean-variance criterion given by (A14). Using (A14)–(A16) and (A33),
we have

Ui =
1

2φi
(kiφi + 2)q2

i

=
1

2
F (ki, φi)

[
E(θi|Ii)− p

]2
.

Now we invoke the fact that if X ∼ N(0, σ2), then E
(
e−

1
2
X2)

= (1 + σ2)−
1
2 . We have

E
[
− exp(−rWi)

]
= −E

[
exp

(
−1

2
rF (ki, φi)

[
E(θi|Ii)− p

]2)]
= −

[
1 + rF (ki, φi)E[E(θi|Ii)− p]2

]− 1
2 ,

and therefore (from (A32)):

Ui =
1

2
F (ki, φi)E

[
E(θi|Ii)− p

]2
.
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Using (A17)–(A20), we obtain:

U Ii =
1

2
F (kI , φI)E(θi − p)2,

UUi =
1

2
F (kUi , φ

U
i )

[
1− σθip

σ2
p

]2

σ2
p.

The desired expression for U Ii is immediate. For UUi the argument is the same as in the
proof of Lemma 6.1. �

Thus equilibrium utilities are the same as in the main model (up to a monotonic trans-
formation) except that the parameter k is replaced by kI for the informed, and by kUi
for the uninformed in group i. We do not have a result that is analogous to Proposi-
tion 6.2. However, Example 6.1 is still valid (kU1 converges to kI as σ2

ν → 0, so that
limσ2

ν→0 F (kU1 , φ
U
1 ) = limσ2

ν→0 F (kI , φU1 ) > limσ2
ν→0 F (kI , φI)). Lemma 7.1 holds with k

replaced by kI ; thus φI solves

β1 =
R>1 ηI
η>I RηI

(kIφI + 2) = 1. (A35)

It is straightforward to check that Propositions 7.2 and 7.3, and Lemma 7.4 also hold.
Next, we verify that Proposition 7.5 holds (we restate this result for convenience):

Proposition A6.8 (Welfare) Consider an F1-economy with two groups. Suppose ρ ≤
1/2 and N I

1 ≤ N I
2 /3. Then UU1 = 0 for all N I

1 , and the utility of all other agents is
strictly decreasing in N I

1 .

Proof We will show that ∂UU2 /∂N I
1 < 0. The other welfare effects follow from the

arguments in the proof of Proposition 7.5. From this proof, we recall that ∂V2/∂N
I
1 < 0,

and ∂G2/∂N
I
1 < 0. From (A23), we have ∂kU2 /∂N

I
1 ∝ −∂V2/∂N

I
1 > 0, and from (A33),

∂F (x, k)/∂k < 0, and ∂F (x, k)/∂x > 0. Hence, using the utility expression given by
(A34), it suffices to show that ∂φU2 /∂N

I
1 < 0.

From (A24), (A25), (A26) and (A35), φU2 solves

kU2 (φU2 )2 + b2φ
U
2 − Φ = 0, (A36)

where

b2 = 2− R>2 ηI
R>1 ηI

− kU2 Φ.

Implicitly differentiating (A36) with respect to N I
1 , we obtain:

∂φU2
∂N I

1

=
1

2kU2 φ
U
2 + b2

[
∂Φ

∂N I
1

−
(
∂kU2
∂N I

1

φU2 +
∂b2

∂N I
1

)
φU2

]

=
1

2kU2 φ
U
2 + b2

 ∂Φ

∂N I
1

−

 ∂kU2
∂N I

1

φU2 −
∂
R>2 ηI
R>1 ηI

∂N I
1

− ∂kU2
∂N I

1

Φ− kU2
∂Φ

∂N I
1

φU2


=

1

2kU2 φ
U
2 + b2

(1 + kU2 φ
U
2 )

∂Φ

∂N I
1

+ φU2
∂
R>2 ηI
R>1 ηI

∂N I
1

+ (Φ− φU2 )φU2
∂kU2
∂N I

1

 .
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From (A36), 2kU2 φ
U
2 + b2 > kU2 φ

U
2 + b2 = Φ/φU2 > 0. From (86), ∂Φ/∂N I

1 ≤ 0, and

from (87), ∂
R>2 ηI
R>1 ηI

/∂N I
1 < 0. From (A12), (A24) and (A35), and the assumption that

N I
1 ≤ N I

2 /3,

Φ− φU2 ∝ 1− R>2 ηI
R>1 ηI

∝ R>1 ηI −R>2 ηI = (1− ρ)(N I
1 −N I

2 ) < 0.

As noted earlier, ∂kU2 /∂N
I
1 > 0. Using all these facts, we conclude that ∂φU2 /∂N

I
1 < 0.

�

Finally, it is easy to check that Propositions 8.1 and 8.2 hold.

A7 An Extended Model

In this section we extend the model in the paper to allow for agents who are either well-
informed or poorly informed. To simplify our calculations we suppose that there are only
two groups, 1 and 2, with independent values, and all agents in group 2 are well-informed.
In particular, for each group i, i = 1, 2, there are N I

i well-informed traders who observe
a signal sIi = θi + εIi . In addition, there are NU poorly informed traders in group 1 who
observe a signal sU = sI1 + εU = θ1 + εI1 + εU . We assume that (i) N I

1 ≥ 1, N I
2 ≥ 1 and

NU ≥ 1; (ii) θ1, θ2, ε
I
1, ε

I
2 and εU are mutually independent joint normal random variables

with zero mean; and (iii) Var(θi) = σ2
θ , and Var(εIi ) = σ2

εI
, for i = 1, 2. We denote the

variance of εU by σ2
εU

.
Let φIi be the depth parameter for well-informed agents in group i, and φU the depth

parameter for poorly informed agents in group 1. Let

Ω :=
N I

1σ
2
εU

(N I
1 )2σ2

εU
+ (N I

2 )2(σ2
θ + σ2

εI
+ σ2

εU
)
.

The following proposition characterizes the linear equilibrium for given depths.

Proposition A7.1 (Equilibrium for given depths) The depth parameters for well-
informed agents are the same for both groups: φI1 = φI2 = φI . Given φI and φU , agents’
demand functions are

qIi = µIsIi − αIp, i = 1, 2,

qU1 = µUsU − αUp,

where

αI =
φI

kφI + 1
, (A37)

µI =
σ2
θ

σ2
θ + σ2

εI

φI

kφI + 1
,

αU =
φU

kφU + 1

[
1− Ω(kφI + 2)

]
, (A38)

µU =
(N I

2 )2σ2
θ[

(N I
1 )2σ2

εU
+ (N I

2 )2(σ2
θ + σ2

εI
+ σ2

εU
)
][
k + (φU)−1

]
+N I

1N
Uσ2

εU

[
k + (φI)−1

] .
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The price function is

p = Φ−1
[
µI(N I

1 s
I
1 +N I

2 s
I
2) +NUµUsU

]
, (A39)

where Φ is market depth, given by

Φ = φI
kφI + 2

kφI + 1
. (A40)

Proof We look for an equilibrium in linear strategies of the form

qIi (s
I
i , p) = µIi s

I
i − αIi p, (A41)

qU1 (sU , p) = µUsU − αUp. (A42)

The market-clearing condition is

N I
1µ

I
1s
I
1 +N I

2µ
I
2s
I
2 +NUµUsU − Φp = 0,

where
Φ := N I

1α
I
1 +N I

2α
I
2 +NUαU . (A43)

The group-specific depth parameters are related to Φ as in the main model:

φIi = Φ− αIi , φU = Φ− αU . (A44)

Agents’ optimal strategies are given by

qIi (s
I
i , p) =

E(θi|sIi , p)− p
k + (φIi )

−1
, (A45)

qU1 (sU , p) =
E(θ1|sU , p)− p
k + (φU)−1

. (A46)

We have

E(θi|sIi , p) = E(θi|sIi ) =
σ2
θ

σ2
θ + σ2

εI

sIi . (A47)

Therefore, from (A41), (A45) and (A47),

αIi =
1

k + (φIi )
−1

=
φIi

kφIi + 1
,

µIi =
σ2
θ

σ2
θ + σ2

εI

αIi .

Moreover,

Φ = αIi + φIi =
φIi

kφIi + 1
+ φIi = φIi

kφIi + 2

kφIi + 1
,

which is increasing in φIi . It follows that φIi is the same for both groups, and hence so
are αIi and µIi . Henceforth, we drop the i subscripts on these variables. Also,

E(θ1|sU , p) = E
[
θ1|sU ,Φ−1(N I

1µ
IsI1 +N I

2µ
IsI2 +NUµUsU)

]
= E(θ1|sU , sI), (A48)
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where

sI = (µI)−1[Φp−NUµUsU ] (A49)

= N I
1 s

I
1 +N I

2 s
I
2

= N I
1 (θ1 + εI1) +N I

2 (θ2 + εI2).

We have
E(θ1|sU , sI) = bUsU + bIsI , (A50)

where

bU =
Cov(θ1, s

U)Var(sI)− Cov(θ1, s
I)Cov(sU , sI)

Var(sU)Var(sI)− [Cov(sU , sI)]2

=
(N I

2 )2σ2
θ

(N I
1 )2σ2

εU
+ (N I

2 )2(σ2
θ + σ2

εI
+ σ2

εU
)
,

bI =
Cov(θ1, s

I)Var(sU)− Cov(θ1, s
U)Cov(sU , sI)

Var(sU)Var(sI)− [Cov(sU , sI)]2

=
N I

1σ
2
θσ

2
εU[

(N I
1 )2σ2

εU
+ (N I

2 )2(σ2
θ + σ2

εI
+ σ2

εU
)
] [
σ2
θ + σ2

εI

] .
Therefore, from (A42), (A46), (A48), (A49) and (A50),

αU =
1− (µI)−1bIΦ

k + (φU)−1

=
φU

kφU + 1

[
1− bI

σ2
θ + σ2

εI

σ2
θ

(kφI + 2)

]
=

φU

kφU + 1

[
1−

N I
1σ

2
εU

(N I
1 )2σ2

εU
+ (N I

2 )2(σ2
θ + σ2

εI
+ σ2

εU
)
(kφI + 2)

]
,

and

µU =
bU − (µI)−1bINUµU

k + (φU)−1

=
bU

k + (φU)−1 + (µI)−1bINU

=
(N I

2 )2σ2
θ[

(N I
1 )2σ2

εU
+ (N I

2 )2(σ2
θ + σ2

εI
+ σ2

εU
)
][
k + (φU)−1

]
+N I

1N
Uσ2

εU

[
k + (φI)−1

] .
This completes the proof. �

Note that the coefficients (αI , µI , αU , µU) converge to the corresponding expressions in
Proposition 3.1 when σ2

εI
= 0 and σ2

εU
→∞.

Proposition A7.1 gives us prices and demand functions in terms of the depth param-
eters φI and φU . Using (A40), (A43) and (A44), we obtain

NU

[
φI
kφI + 2

kφI + 1
− φU

]
=

φI

kφI + 1

[
(kφI + 2)−N I

]
, (A51)
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where N I := N I
1 +N I

2 . From (A38), (A40) and (A44), we have

φI
kφI + 2

kφI + 1
− φU =

φU

kφU + 1

[
1− Ω(kφI + 2)

]
. (A52)

An equilibrium can then be described in reduced form as depths (φI , φU) ∈ R2
++ that

solve (A51) and (A52). These equations are the same as the equilibrium equations (19)
and (20), for the case of LI = L = {1, 2} and LU = {1}, except that R>1 ηI/η

>
I RηI is

replaced by Ω.

Proposition A7.2 (Equilibrium characterization) There is a unique equilibrium.
It has the following properties:

i. φU > φI ;

ii. αI > 0;

iii. αU < αI ;

iv. αU > 0 if N I
1 ≤ N I

2 .

Proof The arguments below are identical to the corresponding arguments in the main
paper, with R>1 ηI/η

>
I RηI replaced by Ω.

Proof of existence: The existence proof is the same as for Proposition 3.2. In the final
step of the proof we need to establish that f ′(0) < 0. Noting that

Ω <
N I

1

(N I
1 )2 + (N I

2 )2
≤ N I

1

(N I
1 )2 + 1

≤ 1

2
, (A53)

we see that

f ′(0) = −(N I − 2) +NU
[
(1− Ω)−1 − 2

]
< −(N I − 2) +NU

[(
1− 1

2

)−1

− 2

]
= −(N I − 2)

≤ 0.

Uniqueness of equilibrium follows from the specification of the trading game, as in Propo-
sition 3.2.

Proof of (i)–(iv): To show that φU > φI , we use the same argument as in the proof of
Proposition 4.2 (i), noting that Ω > 0. The inequality αU < αI is then immediate from
(A44). From (A37), we have αI > 0. Finally, analogous to the proof of Proposition 4.2
(vi), we see that αU1 > 0 if and only if N IΩ < 1. Under the assumption that N I

1 < N I
2 ,

we have

N IΩ < N I N I
1

(N I
1 )2 + (N I

2 )2
≤ 1.

This completes the proof. �

The following result is the analog of Proposition 5.1. As in the main paper, we
distinguish the parameters of a competitive economy with a “hat”.
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Proposition A7.3 (Competitive equilibrium) In a competitive economy with the mass
of agents given by (N I

1 , N
I
2 , N

U), the slope parameters are

α̂I = k−1,

µ̂I = k−1 σ2
θ

σ2
θ + σ2

εI

,

α̂U = k−1 1−N IΩ

1 +NUΩ
,

µ̂U = k−1 (N I
2 )2σ2

θ

(N I
1 )2σ2

εU
+ (N I

2 )2(σ2
θ + σ2

εI
+ σ2

εU
) +N I

1N
Uσ2

εU

.

The slope parameters satisfy all the properties in Proposition A7.2.

Proof The market-clearing condition is

N I
1 µ̂

I
1s
I
1 +N I

2 µ̂
I
2s
I
2 +NU µ̂UsU − Φ̂p = 0,

where
Φ̂ := N I

1 α̂
I
1 +N I

2 α̂
I
2 +NU α̂U .

Agents’ portfolio choices are given by (A45) and (A46), but with zero price impact. The
conditional expectations are the same as in the imperfectly competitive case. Hence, we
obtain:

α̂I = k−1,

µ̂I = k−1 σ2
θ

σ2
θ + σ2

εI

,

α̂U = k−1
[
1− (µ̂I)−1bIΦ̂

]
= k−1(1− ΩkΦ̂),

and

µ̂U = k−1
[
bU − (µ̂I)−1bINU µ̂U

]
=

bU

k + (µ̂I)−1bINU

= k−1 (N I
2 )2σ2

θ

(N I
1 )2σ2

εU
+ (N I

2 )2(σ2
θ + σ2

εI
+ σ2

εU
) +N I

1N
Uσ2

εU

.

Therefore,
Φ̂ = k−1

[
N I +NU(1− ΩkΦ̂)

]
,

so that

kΦ̂ =
N I +NU

1 +NUΩ
.

It follows that

α̂U = k−1

[
1− (N I +NU)Ω

1 +NUΩ

]
= k−1 1−N IΩ

1 +NUΩ
.
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It is easy to check that the slope parameters satisfy properties (ii)–(iv) in Proposition
A7.2. �

Next, we provide convergence and limit results analogous to those in Propositions 5.2,
5.3 and 5.4.

Proposition A7.4 (Convergence) We have the following convergence results:

i. limλ→∞ E(ληI , λN
U) = Ê(ηI , N

U), and φI and φU are strictly increasing in λ;

ii. limλ→∞ E(ληI , N
U) = limλ→∞ Ê(ληI , N

U), and φI and φU are strictly increasing in
λ. Also, limNI

`→∞
E(ηI , N

U) = limNI
`→∞

Ê(ηI , N
U);

iii. There exist strictly positive scalars κ and κ̄ such that {φI , φU} ⊂ [κ, κ̄] for all
NU ≥ 1, and φI(NU)−φI(N̆U) ∝ αU(φI(N̆U)), for all NU > N̆U ≥ 1. Furthermore,
limNU→∞ α

U = 0 and limNU→∞N
UαU <∞.

Proof These results follow from the same arguments as in the proofs of Propositions
5.2, 5.3 and 5.4, with R>1 ηI/η

>
I RηI replaced by Ω. In the proof of Proposition 5.4, the

assumption that N I
i ≥ 2 is needed to establish that limφI→0 gi(φ

I)/φI < 2 (see (62)).
Here we can use (A53):

lim
φI→0

g1(φI)

φI
= (1− Ω)−1 <

[
1− 1

2

]−1

= 2.

Thus we do not need to assume that N I
1 ≥ 2. �

Finally, we turn to price informativeness.

Proposition A7.5 (Price informativenesss) Price informativeness for group 1 is higher
(and that for group 2 is lower) in the imperfectly competitive economy compared to the
corresponding perfectly competitive economy.

Proof Using (21) and (A39), we can calculate price informativeness in the imperfectly
competitive economy:

V1 =
(N I

1 +NUµ)2σ2
θ[

(N I
1 +NUµ)2 + (N I

2 )2
]
(σ2

θ + σ2
εI

) + (NUµ)2σ2
εU

,

V2 =
(N I

2 )2σ2
θ[

(N I
1 +NUµ)2 + (N I

2 )2
]
(σ2

θ + σ2
εI

) + (NUµ)2σ2
εU

,

where

µ :=
µU

µI
=

(N I
2 )2(σ2

θ + σ2
εI

)[
(N I

1 )2σ2
εU

+ (N I
2 )2(σ2

θ + σ2
εI

+ σ2
εU

)
]k+(φU )−1

k+(φI)−1 +N I
1N

Uσ2
εU

.

For the corresponding competitive economy, the price informativeness measures V̂1 and
V̂2 are given by the same expressions as for V1 and V2 above, but with µ replaced by µ̂,
where

µ̂ :=
µ̂U

µ̂I
=

(N I
2 )2(σ2

θ + σ2
εI

)

(N I
1 )2σ2

εU
+ (N I

2 )2(σ2
θ + σ2

εI
+ σ2

εU
) +N I

1N
Uσ2

εU

.
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Clearly, ∂V2/∂µ < 0. Furthermore,

∂V1

∂µ
∝ (N I

2 )2(σ2
θ + σ2

εI
)−N I

1N
Uµσ2

εU

∝
[
(N I

1 )2σ2
εU

+ (N I
2 )2(σ2

θ + σ2
εI

+ σ2
εU

)
]k + (φU)−1

k + (φI)−1

> 0.

Since φU > φI , we have µ > µ̂, and hence V1 > V̂1 and V2 < V̂2. �

For a discussion of the results in this section, see Section 9 of the paper.

A8 Numerical Computations

In this section we provide an algorithm for calculating the depth parameter φI , which
determines all other equilibrium variables. We also do some simulations on the correlation
matrix R to demonstrate the flexibility of our model.

The equation for φI is f(φI) = 0, where the function f is defined by (44). In the proof
of Proposition 3.2 we show that f(0) = 0, f ′(0) < 0 and limφI→∞ f(φI) =∞. We define
the iteration sequences {xt}∞t=0 and {yt}∞t=0 as follows.

First, we choose a sufficiently large value of φI0 such that f(φI0) > 0, and set x0 =
y0 = φI0. Next, if f(x0/2) < 0, we set y1 = x0/2, and if f(x0/2) > 0, we set x1 = x0/2. If
f(x1/2) > 0, we set x2 = x1/2, and continue in this manner until the first t1 such that
f(x0/2

t1) < 0, whereupon we set y1 = xt1 = x0/2
t1 .

If f((xt1 +xt1−1)/2) > 0, we set y2 = (xt1 +xt1−1)/2, and if f((xt1 +xt1−1)/2) < 0, we
set xt1+1 = (xt1 + xt1−1)/2. If f((xt1+1 + xt1−1)/2) < 0, we set xt1+2 = (xt1+1 + xt1−1)/2,
and continue in this manner until the first t2 > t1 such that f((xt2−1 + xt1−1)/2) > 0,
whereupon we set y2 = xt2 = (xt2−1 + xt1−1)/2.

Similarly, we can find {yt}t≥3 such that f(y3) < 0, f(y4) > 0, f(y5) < 0, . . . . Clearly
y∗ := limt→∞ yt exists, and f(y∗) = 0. Thus y∗ is the desired value of φI .

In the paper we assume that the correlation matrix R is positive definite, and that
R>i ηI ≥ 0 for all i. We do not impose the equicommonality assumption of Rostek and
Weretka (2012, 2015) (see Section A4). We now numerically investigate how price infor-
mativeness and depth are affected when equicommonality is imposed on R.

Since R is positive definite, it can be written as R = CC>, where C is a lower-
triangular matrix with positive diagonal elements (Cholesky decomposition). Moreover,
the diagonal elements of R are equal to one, implying that each row of C has unit length.
In order to ensure that R>i ηI ≥ 0 for all i we assume in addition that each element of C
below the diagonal is positive.

For simplicity, we consider the case of L = 3. Then the Cholesky factor C takes the
form

C =

 1 0 0
c21 c22 0
c31 c32 c33

 ,

where all the entries on or below the diagonal are positive, c2
21+c2

22 = 1, and c2
31+c2

32+c2
33 =
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1. This gives us

R = CC> =

 1 c21 c31

c21 1 c21c31 + c22c32

c31 c21c31 + c22c32 1

 .

We randomly sample the matrix R by independently choosing c21 from the interval (0, 0.1)
with a uniform distribution, and each of c31, c32 and c33 from the interval (0, 1) with
a uniform distribution, subject to the constraint c2

31 + c2
32 + c2

33 = 1. The scalar c22 is
determined by the relation c2

21+c2
22 = 1. For any given matrix R, we have a corresponding

matrix R̂ which has the same form as R, with the same value of c21, but which additionally
satisfies the equicommonality condition: c21 = c31 = c21c31 + c22c32.

For each R and R̂, we calculate price informativeness and depth (for informed agents)
for the following parameter values: k = 1, ηI = (2, 4, 6), and ηU = (50, 30, 10). Depth
depends on both ηI and ηU , while price informativeness depends only on ηI . The figures
below plot expected price informativeness and the expected value of the depth parameter
φI for both R and R̂, based on 100,000 realizations of R and R̂. Recall that φI pins down
all other depth parameters, including market depth Φ which is monotonically increasing in
φI . The plots show that, in the economy under consideration, imposing equicommonality
reduces price informativeness for all groups and increases market liquidity.

Figure A1: Expected price informativeness Vi for group i = 1, 2, 3
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Figure A2: Expected φI for the economy parametrized by (ληI , ληU), λ ≥ 1
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