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Abstract

Under the assumption of normally distributed asset values, Kyle (1989) describes

Bayesian Nash equilibria which partially reveal the speculators�private information.

We adopt Kyle�s market microstructure model to economies with non-negative asset

values. We argue that the most plausible equilibria for such economies are Bayesian

Nash equilibria in which all speculators push the asset price to zero irrespective of

their private information. For assets with non-negative values, Kyle�s (1989) model

of �imperfect competition�with partially revealed information thus becomes a model

of �perfect price collusion�which does not reveal any private information.
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1 Introduction

Competitive equilibria have a measurability problem when it comes to asymmetric in-

formation: if traders�demand functions are measurable with respect to their di¤erent

information types, then there typically do not exist equilibrium prices which can clear

markets in every state of the world. One prominent attempt to circumvent this problem

is the introduction of rational expectations equilibria in the speci�c sense that the inverse

of the equilibrium price function is supposed to reveal information to all traders which

they can use in their ex ante utility maximization problem.1 Radner (1979) and Allen

(1981) have shown that the information revealed by prices is generically one-to-one to the

full communication information, i.e., the information which would obtain if all traders

truthfully shared their private information. As a consequence, all traders�demand func-

tions become in a rational expectations equilibrium measurable with respect to the same

full communication information. The problem with this �solution�to the measurability

problem is that rational expectations equilibria ignore the traders�incentives to hide their

private information through the manipulation of prices.2 For example, why should the

owner of a bad car in Akerlof�s (1970) lemon market reveal the low quality of his car by

accepting a low price?

Game-theoretic models of asset trade can o¤er solutions to the question of how in-

centive compatibility can be combined with the competitive equilibrium requirement of

market-clearing in every state of the world. On the one hand, the strategic solution of

a Bayesian Nash equilibrium ensures, by its very de�nition, incentive compatibility for

all information types. On the other hand, the consideration of strategies in terms of

demand-schedule correspondences� through which speculators�information types submit

their di¤erent demands at di¤erent prices to an auctioneer� might allow for prices to clear

markets in every state of the world as long as these demand-schedules contain su¢ ciently

rich combinations of demands and prices.

1Early examples of �ful�lled expectations�(=rational expectations) equilibria appear in Green (1975),

Grossman (1976, 1977, 1978), and Kreps (1977). Radner (1979)� for the case of a �nite state space� and

Allen (1981)� for the case of a general probability space� prove the generic existence of fully revealing

rational expectations equilibria.
2Hellwig (1980) basically argues that rational expectations equilibria are only incentive compatible for

large markets in which each atomless trader has no impact on the equilibrium price.
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A pioneering article in this literature is Kyle (1989) whose strategic model of �imperfect

competition� links di¤erent realizations of speculator�s private information to di¤erent

market outcomes through equilibrium demand-schedule correspondences that have a linear

structure.3 Although already published in 1989, Kyle�s model is still highly popular.

The www.dimensions.ai database website writes: �This publication in The Review of

Economic Studies has been cited 627 times. 9% of its citations have been received in the

past two years, which is higher than you might expect, suggesting that it is currently

receiving a lot of interest.�4 Unlike in competitive equilibrium models, competition in

Kyle (1989) is �imperfect�because traders are not merely price-takers but can in�uence

the market price through their choice of demand-schedule correspondences:

�After private observations are realized, each speculator chooses a demand

function, taking as given the strategies other speculators use to choose theirs.

Since the market clearing price is determined after the demand functions are

chosen, each speculator realizes that his choice of demand functions in�uences

the market clearing price. In other respects, the equilibrium looks Walrasian,

i.e. an "auctioneer" calculates the equilibrium price by aggregating demand

curves.�(Kyle 1989, p.318)

This paper adopts Kyle�s (1989) market microstructure model to situations in which

asset values are always non-negative. Kyle�s (1989) expected utility speci�cation� which

combines a normally distributed asset value with a CARA (=constant absolute risk aver-

sion) Bernoulli utility function� comes with the analytically convenient feature that de-

mand functions are linear in the price. But as a severe drawback, Kyle�s utility spec-

i�cation makes his model very restrictive: all information types of the speculators will

only demand some limited amount of the asset even if its price is zero. More generally,

the assumption that asset values can be negative excludes relevant asset classes traded at

stock exchanges such as shares or bonds whose minimal value to a limited-liability investor

cannot be worse than zero. Our own model applies Kyle�s (1989) original game-theoretic

structure to speculators who have (i) arbitrary Bernoulli utility functions, (ii) arbitrary

3For a discussion of Kyle�s (1989) model within the wider context of the market microstructure liter-

ature see, e.g., Easley and O�Hara (1995).
4Accessed 03 August 2023 at https://badge.dimensions.ai/details/id/pub.1069868950

3

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4567777

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



(heterogeneous) beliefs, and (iii) arbitrary private information types whereby we restrict

attention to assets that can only have non-negative values.

We establish the existence of a symmetric Bayesian Nash equilibrium (=BNE) in

which the information types of all speculators collude to push the asset price towards

zero in every state of the world. We argue that this �perfect price collusion�BNE is

highly plausible because the corresponding BNE strategy of each speculator is a best

response against any demand-schedule through which some opponent would like to buy

as much as possible of the valuable asset at a zero price. Our �ndings rely heavily

on Kyle�s structural assumption that speculators have to choose between convex-valued

demand-schedule correspondences and not just between demand-schedule functions.5 As

a consequence, our game-theoretic analysis of best responses cannot be reduced to �rst-

order conditions but has to take into account �jumps� that arise from the auctioneer�s

market-clearing algorithm.

The �perfect price collusion�BNE of our model is in stark contrast to the partially-

revealing Bayesian Nash equilibria described in Kyle (1989) in which market prices depend

on the speculators�private information. We construct an illustrative example for which

partially information revealing BNE that Pareto-dominate the �perfect price collusion�

BNE can only be established under non-generic conditions imposed on the speculators�

beliefs. Kyle�s (1989) model of �imperfect competition� thus becomes for non-negative

asset values a model of �perfect price collusion�in which the corresponding zero market

price does not reveal any private information.

The remainder of our analysis proceeds as follows. Section 2 formally translates Kyle�s

(1989) structural assumptions into a class of Bayesian games. Section 3 proves the ex-

istence of �perfect price collusion�BNE. Section 4 discusses our �ndings and Section 5

concludes. Formal proofs are relegated to the Appendix.

5To restrict attention to demand-schedule functions only would mean that the speculators are only

allowed to submit ��ll-or-kill�orders, which is unrealistic for most markets.
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2 The Kyle (1989) market microstructure model with

non-negative asset values

2.1 Kyle�s structural assumptions

Whereas our own approach will make di¤erent distributional assumptions than Kyle�s

(1989) model, we want to stay as closely as possible to the details of his original assump-

tions concerning the model�s market microstructure. The following quotes from Kyle

(1989, p.321) recall these structural assumptions (which we label for later reference).

K1: �A "demand schedule" Xn(�; in) is allowed to be any convex valued,
upper-hemicontinuous correspondence mapping prices p into non-empty sub-

sets of the closed in�nite interval [�1;+1].�
K2: �So-called "all-or-nothing" orders (orders to purchase all of the desired

quantity or none, with partial executions not accepted) are excluded [::::] : if

the market-clearing price equals the limit price in a trader�s limit order, he

must accept as a satisfactory execution all of the quantity he requested, or

any fraction thereof.�

K3: �These correspondences are submitted to an auctioneer (i.e. a broker

or non-trading specialist), who proceeds as follows. First, the set of market-

clearing prices and quantity allocations is calculated. [:::] If a market-clearing

price exists, the auctioneer chooses from the set of all such prices (which is

closed by upper hemicontinuity) that price with minimum absolute value (or

the positive one if p and �p both have minimal absolute value).�
K4: �He then chooses the market-clearing quantity allocation which min-

imizes the sum of squared quantities traded by speculators.�

K5: �If a market-clearing price does not exist, the fact that correspon-

dences are convex-valued implies that there is either positive excess demand

at all prices or negative excess demand at all prices. In the former case, the

auctioneer announces a price p = +1, and all buyers of bounded quantities
receive negatively in�nite utility. Similarly, in the latter case, the auction-

eer announces a price p = �1, and all sellers of bounded quantities receive
negatively in�nite utility.�
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In contrast to Kyle, we will neither consider any in�nite quantities or prices nor the

possibility of negative prices. In this regard, the original formulation of K5 is somewhat

unclear.6 The game-theoretic intention of K5, however, is very clear: �In�nite quantities

and prices are a theoretical possibility, but they do not occur in the equilibrium de�ned

below because they imply in�nitely negative utility.� (Kyle 1989, p.321). That is, the

purpose of K5 is to enforce market-clearing strategy choices in a Bayesian Nash equilibrium

by punishing the possible non-existence of a market-clearing outcome through an in�nitely

negative utility. We therefore reformulate K5 more directly as follows:

K5�: If markets do not clear in every state of the world, each speculator

receives an in�nitely negative utility.

In what follows, we will translate Kyle�s structural assumptions K1,...,K5�into a class

of Bayesian games. We will thereby distinguish between two di¤erent scenarios in or-

der to address an ambiguity concerning Kyle�s de�nition of admissible demand-schedule

correspondences.

2.2 Translating Kyle�s structural assumptions into a class of

Bayesian games

We consider an asset trade economy in which N speculators can buy (but not sell) quan-

tities of some risky asset from a noise trader who� randomly and inelastically� supplies

the asset. Given the submitted demand-schedules for the speculators�realized informa-

tion types and the noise trader�s supply, markets are cleared by an auctioneer who uses a

speci�c algorithm to determine the market price and market allocation (provided that at

least one market-clearing price exists).

2.2.1 Information types and beliefs

The set of possible values of the asset� which are always non-negative by assumption� is

given by V � R�0. Denote by �i an arbitrary index set of possible information types for
6If an auctioneer can announce a price p = �1, all speculators might collude to demand positive but

su¢ ciently small amounts of the asset in order to generate �negative excess demand�which would transfer

via p = �1 in�nitely positive utility to them.
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any given speculator i 2 f1; :::; Ng with the general interpretation that any given type
�i 2 �i impacts somehow on speculator i�s belief about the asset�s true value. Finally,
denote by Z � R�0 the possible amounts of the asset supplied by the noise trader. This
random amount is always non-negative because we restrict attention to situations in which

speculators compete about some exogenously given supply of the asset.

De�ne the relevant state space as


 = V ��1 � � � � ��N � Z

with (v; �1; :::; �N ; z) 2 
 as generic element. Each speculator�s prior beliefs are given by
some common additive probability measure �i de�ned on the measurable space (
;B)
with B denoting the Borel-sigma algebra on the state space 
.7 When speculator i learns
his private information type �i�which happens before any demand-schedule is submitted�

he updates his prior to the conditional probability measure �i (� j �i). In case we want to
model the information type of some uninformed speculator i (as, e.g., considered in Kyle

(1989)), we simply set �i = f�ig to obtain �i (� j �i) = �i (�).
Introduce the following coordinate random variables on the probability space (
;B; �i)

v (v; �i; ��i; z) = v,

�i (v; �i; ��i; z) = �i,

z (v; �i; ��i; z) = z

for all (v; �1; :::; �N ; z) 2 
, which stand for the random asset value v, information type �i,
and supplied amount z, respectively. Kyle (1989) stipulates that an informed speculator

i�s information type is given as the true value of the asset plus some random error term,

i.e.,

�i = v + ei,

such that v and the error terms e1; :::; eN are independently and normally distributed with

zero means under the probability measure �i. Kyle (1989) also assumes that the random

supply z is independently and normally distributed with zero mean so that negative values

7Recall that a Borel-sigma algebra is generated by the open sets of 
. We endow 
 with the standard

product topology such that the V and Z are endowed with the Euclidean topology on R�0. The same
holds for �i if �i � R�0. If �i is just some �nite non-numerical set, we use the discrete topology.
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of z would stand for a positive demand of the (aggregate) noise trader. At this point we

deviate from Kyle�s speci�c distributional assumptions: we only consider non-negative,

but arbitrarily distributed, values of the random variables v and z whereby we allow for

heterogeneous �i.

2.2.2 Actions and strategies

A demand-schedule correspondence of information type �i is any non-empty set-valued

mapping

'i [�i] : P � R�0

for some set of admissible prices P � R�0 satisfying 0 2 P . By Kyle�s Assumption K1 (i)
'i [�i] (p) has to be convex-valued for every p and (ii) ' [�i] must be upper-hemicontinuous

on P , i.e., for any open set U around the set 'i [�i] (p), p 2 P , the pre-image of U under
'i [�i]

U�1 = fp0 2 P j 'i [�i] (p0) 2 Ug

is also open in the Euclidean topology on P . While we adopt the assumption of convex-

valuedness of 'i [�i], we use a weaker assumption than upper-hemicontinuity in that we

only require that the values 'i [�i] (p), p 2 P , are closed sets.
By Kyle�s Assumption K2, the speculator �must accept as a satisfactory execution

all of the quantity he requested, or any fraction thereof.�Kyle (1989, p.321) writes that

K2, and in particular the exclusion of �all-or-nothing� orders, is already implied �by

the assumption that demand correspondences be convex-valued�. But this is technically

not correct: to formalize Assumption K2, one needs to combine convex-valuedness with

the additional assumption that the zero demand-o¤er is always included. To distinguish

between these two di¤erent de�nitions of admissible demand-schedule correspondences�

one imposing K2, the other not� , we consider two di¤erent scenarios.

De�nition 1.

(i) We speak of the �Convexity�scenario i¤, for any given p 2 P , the value 'i [�i] (p) of
an admissible demand-schedule correspondence is some closed and convex interval
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on R�0, i.e.,
either 'i [�i] (p) = [x; x] or 'i [�i] (p) = [x;1) (1)

such that 0 � x � x whereby x and x may depend on the price p.

(ii) The �Any-fraction�scenario is the special case of the �Convexity�scenario such that

x = 0. That is, we speak of the �Any-fraction� scenario i¤, for any given p 2 P ,
the value 'i [�i] (p) of an admissible demand-schedule correspondence is some closed

and convex interval with zero as lower bound, i.e.,

either 'i [�i] (p) = [0; x] or 'i [�i] (p) = [0;1) (2)

where x � 0 denotes the �quantity requested�at price p.

Denote by Ak with k 2 fconv; anyfg the set of all admissible demand-schedule
correspondences, i.e., admissible actions, of any given information type �i. The index

k = conv refers to the �Convexity scenario�� with admissible demand-schedule corre-

spondences given by (1)� whereas k = anyf refers to the �Any-fraction scenario�� with

admissible demand-schedule correspondences given by (2). A strategy si of speculator i

is any mapping that assigns to every information type of i some action, i.e., si : �i ! Ak

whereby we also write si = ('i [�i])�i2�. The interpretation of a strategy is as follows.

Suppose that speculator i chooses strategy si = ('i [�i])�i2�. After learning his informa-

tion type �i, he submits through the action 'i [�i] the following demand-schedule to the

auctioneer �
(xi; p) 2 R2�0 j xi 2 'i [�i] (p) , p 2 P

	
.

Through this demand-schedule speculator i commits himself to buy any amount xi 2
'i [�i] (p) provided that the auctioneer announces p as the market price. For example,

by submitting some bounded demand-schedule 'i [�i] (p) = [0; �x] in accordance with the

�Any-fraction�scenario, the speculator commits himself to buy at the market price p �all

of the quantity he requested�, i.e., xi = �x, or �any fraction thereof�, i.e., xi 2 [0; �x). If he
submits, e.g., 'i [�i] (p) = [�x; �x] = f�xg in accordance with the �Convexity�scenario, the
speculator commits himself to buy �x but rejects any other amount at price p, which stands

9
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for an �all-or-nothing�(i.e., ��ll-or-kill�) order that would be excluded under Assumption

K2.

Denote by Si the set of all strategies of speculator i and denote by S the set of all

strategy-pro�les, i.e., S = �Ni=1Si.

Remark 1. The �Convexity�scenario covers the possibility of single-valued demand-

schedule correspondences (i.e., functions), which are convex-valued but would not be

admissible under the �Any-fraction�scenario (unless these functions are constantly zero).

On the one hand, Kyle�s analysis of BNE deals exclusively with (linear) demand-schedule

functions, which would suggest that he either works under the �Convexity�scenario or

that he� implicitly� makes the even stronger assumption that only demand-functions

are admissible. On the other hand, Kyle�s own formulation of Assumption K2 strongly

suggests that he intends to work within the �Any-fraction�scenario. To deal with this

ambiguity in Kyle�s de�nition of admissible demand-schedule correspondences, we will

distinguish between the two scenarios k 2 fconv; anyfg when we establish existence of a
�perfect price collusion�BNE.8

2.2.3 Market-clearing algorithm

Fix some strategy pro�le (s1; :::; sN) 2 S with si = ('i [�i])�i2� for all i. The set of all

potentially market clearing prices in state (v; �1; :::; �N ; z) 2 
 is given as

P � [s] (v; �1; :::; �N ; z) =

(
p 2 P j

NX
i=1

xi = z such that xi 2 'i [�i] (p)
)
.

By Kyle�s Assumption K3, the market price chosen by the auctioneer in state (v; �1; :::; �N ; z)

is pinned down as

p� [s] (v; �1; :::; �N ; z) = minP
� [s] (v; �1; :::; �N ; z) (3)

whenever this minimal market-clearing price exists. In what follows, we write p� [s] : 
!
R�0 for the random variable p� [s] = minP � [s] whenever (3) exists for all (v; �1; :::; �N ; z) 2

8Our Propositions 1 and 2, and their respective proofs, show that these di¤erent scenarios give rise

to di¤erent strategic considerations. Simply put, the possibility to commit to �all-or-nothing�o¤ers gives

speculators under the �Convexity�scenario a greater power to in�uence market-clearing outcomes than

under the �Any-fraction�scenario (also cf. Remark 2 in the following subsection).
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. Else, we say that p� [s] is not well-de�ned. We write p� ['i [�i] ; s�i] for the random

market price that obtains in states (�; �i) if information type �i submits the demand-
schedule correspondence 'i [�i].

The set of all potentially market-clearing demand o¤ers at the market price p� [s] (v; �1; :::; �N ; z)

is given as

X (p� [s] (�)) =
(
(x1; :::; xN) 2 �Ni=1'i [�i] (p� [s] (�)) j

NX
i=1

xi = z

)
. (4)

By Kyle�s Assumption K4, the market-clearing demand o¤ers that are chosen by the

auctioneer in state (v; �1; :::; �N ; z) is some allocation (x�1; :::; x
�
N) that minimizes the �sum

of squared market clearing demands�, i.e.,

(x�1; :::; x
�
N) 2 arg min

(x1;:::;xN )2X(p�[s](�))

NX
i=1

x2i . (5)

For any given state (v; �1; :::; �N ; z) select some minimizing (x�1; :::; x
�
N). In what follows,

we write

x� [s] = (x�1 [s] ; :::;x
�
N [s]) : 
! RN�0

for the corresponding random vector, i.e., for all (v; �1; :::; �N ; z) 2 


x�i [s] (v; �1; :::; �N ; z) = x
�
i for all i,

provided that such minimizers exist for all states. Else, we say that x� [s] is not well-

de�ned. We write x� ['i [�i] ; s�i] for the random market allocation if �i submits the

demand-schedule correspondence 'i [�i].

To emphasize our terminology: p� [s] is not well-de�ned i¤ there exists some state

of the world in which the above market-clearing algorithm cannot pin down any market

price. Analogously, x� [s] is not well-de�ned i¤ there exists some state of the world in

which the above market-clearing algorithm cannot pin down any market allocation.

Remark 2. Let us brie�y illustrate the di¤erent implications of the �Any-fraction�

and the �Convexity�scenario, respectively, on market-clearing outcomes. Consider two

speculators i 2 fA;Bg such that 'A [�A] (p) = [0;1). If �B chooses under the �Any-
fraction�scenario 'B [�B] (p) = [0; z], we obtain in any state (v; �A; �B; z) at the market
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price p� [s] (v; �A; �B; z) = p the following set of market clearing allocations

X (p� [s] (�)) = f(xA; xB) j xA 2 [0; z] , xB = z � xAg .

In accordance with (5) the auctioneer pins down (xA; xB) =
�
z
2
; z
2

�
as market allocation in

any state (v; �A; �B; z). Suppose now that �B chooses under the �Convexity�scenario only

a single amount such that 'B [�B] (p) = fzg. Then the set of market clearing allocations
becomes in any state (v; �A; �B; z) at market price p� [s] (v; �A; �B; z) = p the singleton set

X (p� [s] (�)) = f(xA; xB) = (0; z)g .

By (5), the auctioneer (trivially) pins down (xA; xB) = (0; z) as market allocation in any

state (v; �A; �B; z). Under the �Convexity�scenario a speculator, here information type

�B, can thus reject through an �all-or-nothing�o¤er to share the supplied amount with

other speculators. This is not possible under the �Any-fraction�scenario.

2.2.4 Utility functions

If p� [s] and x� [s] are well-de�ned, the expected utility of speculator i from the strategy

pro�le s = (si; s�i) is given as

Ui (si; s�i) = E�iui ((v � p� [si; s�i])x�i [si; s�i])

where ui denotes some increasing Bernoulli utility function. Whereas Kyle (1989) only

considers CARA Bernoulli utility functions, our speculators can have arbitrary Bernoulli

utility functions as long as they are integrable so that the (�nite) Lebesgue integral

E�iui (�) =
Z



ui (�) d�i

exists.

If p� [s] or x� [s] are not well-de�ned, we set, in accordance with Assumption K5�,

Ui (si; s�i) = �1. (6)
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3 �Perfect price collusion�Bayesian Nash equilibria

Denote by �k = hSi; Ui; i 2 f1; :::; Ngi with k 2 fconv; anyfg any Bayesian game whose
components satisfy the de�nitions of the previous section.9 The strategy pro�le

(s�1; :::; s
�
N) =

�
('�1 [�1])�12�1 ; :::; ('

�
N [�N ])�N2�

�
is a Bayesian Nash equilibrium (=BNE) of �k i¤, for all i 2 f1; :::; Ng,

Ui
�
s�i ; s

�
�i
�
� Ui

�
si; s

�
�i
�

(7)

,

E�iui
��
v � p�

�
s�i ; s

�
�i
��
x�i
�
s�i ; s

�
�i
��

� E�iui
��
v � p�

�
si; s

�
�i
��
x�i
�
si; s

�
�i
��

for all si 2 Si. By the towering property of conditional expectations (cf. Theorem 34.4 in
Billingsley 1995), (7) is with �i-probability one equivalent to

E�i(�i)E�i(�j�i)ui
��
v � p�

�
'�i [�i] ; s

�
�i
��
x�i
�
'�i [�i] ; s

�
�i
��

� E�i(�i)E�i(�j�i)ui
��
v � p�

�
'i [�i] ; s

�
�i
��
x�i
�
'i [�i] ; s

�
�i
��

whenever p� [s] and x� [s] are well-de�ned. A su¢ cient condition for a market-clearing

strategy pro�le s� being a BNE is thus

E�i(�j�i)ui
��
v � p�

�
'�i [�i] ; s

�
�i
��
x�i
�
'�i [�i] ; s

�
�i
��

(8)

� E�i(�j�i)ui
��
v � p�

�
'i [�i] ; s

�
�i
��
x�i
�
'i [�i] ; s

�
�i
��

for all �i 2 �, i 2 f1; :::; Ng.10

Proposition 1. Consider the �Any-fraction�scenario according to which the values of

the admissible demand-schedule correspondences of �anyf are given by (2).

9Some authors stipulate that the players in a Bayesian game must share a common prior. In contrast

to this view, our de�nition of a Bayesian game is more general in that it allows for the possibility of

heterogeneous priors. We would like to refer any reader who is interested in the plausibility of the

common prior assumption to the discussion between Gul (1998) and Aumann (1998).
10For a �nite number of types in � such that � (�i) > 0 for all �i 2 �, the su¢ ciency condition (8) is

also necessary for s� being a BNE.
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(i) There exists a symmetric BNE

s� =
�
('�1 [�1])�12� ; :::; ('

�
N [�N ])�N2�

�
(9)

of �anyf such that, for all �i 2 �, i 2 f1; :::; Ng,

'�i [�i] (p) = [0;1) for all p 2 P: (10)

(ii) The market price and allocations corresponding to s� are independent of the specula-

tors�information types and given as follows

p� [s�] (v; �1; :::; �N ; z) = 0, (11)

x�i [s
�] (v; �1; :::; �N ; z) =

z

N
for all i

for all states (v; �1; :::; �N ; z) 2 
.

The basic intuition for the formal proof of Proposition 1 is straightforward. In the

�Any-fraction� scenario it is impossible for any given information type �i to move the

market price away from zero provided that all other speculators stick to their strategy

pro�le s��i. As the asset� having non-negative values� is always valuable at price zero,

every information type �i would therefore like to buy as many units as possible at price

zero. But this can be achieved through the BNE action (10).

Proposition 2. Now consider the weaker �Convexity�scenario according to which the

values of the admissible demand-schedule correspondences of �conv are given by (1).

If the zero supply is a possibility, i.e., if 0 2 Z, then the strategy pro�le (9)� with

corresponding market price and allocations (11)� is also a BNE of �conv.

In contrast to the �Any-fraction�scenario of Proposition 1, information type �i has� at

the �xed pro�le s��i� now the power to change the market price from zero to some strictly

positive price. The reason is that he can commit under the �Convexity�scenario to some

14
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strictly positive demand at price zero. Combined with the assumption that a zero supply

is a possibility, markets would then not clear at price zero in states in which the supply

is zero. In spite of this power to impact on the market-price, information type �i has no

strict incentive to move the market price away from zero: given his opponents�strategy

pro�le s��i he can never achieve a greater market share of the valuable asset than the

amount z
N
which he already obtains in the BNE (9) at a zero price.

Observe that the BNE action (10) is always a best response of information type �i
against all strategy pro�les s�i which include at least one j 6= i who o¤ers to purchase

any amount of the asset at price zero, i.e.,

'�j [�j] (0) = [0;1) for all �j 2 �j. (12)

In other words, under the perfectly natural expectation that some speculator would always

buy as much as possible of the asset at price zero, any other speculator could not do better

than adopting the BNE action (10). For this reason, we regard the �perfect price collusion�

BNE (9) as the most plausible BNE for the class of games considered in this paper.

Remark 3. Without the additional requirement (12), the BNE action (10) is not

necessarily a best response against all s�i. That is, the �perfect price collusion�BNE is

not necessarily an equilibrium in weakly dominating strategies. To see this, let i 2 fA;Bg,
Z = fzg, and consider sA such that for all �A 2 �A

'A [�A] (p) =

( �
0; z

2

�
p = 0

f0g p = "

Then there exists� for a strictly increasing Bernoulli utility function and z > 0� some

su¢ ciently small " > 0 such that the action

'B [�B] (p) =

(
f0g p = 0

[0;1) p = "

is strictly better against sA than the BNE action (10) because �B would receive the full

amount z of the asset at the small price " rather than z
2
at price zero.
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4 Discussion

4.1 �Perfect price collusion�BNE versus Pareto-superior strat-

egy pro�les: an illustrative example

Although the �perfect price collusion�BNE fully exploits the noise-trader, there typically

exist Pareto-superior strategy pro�les that would result for each speculator in a greater

utility. The reason is that the egalitarian allocation z
N
(whenever the supply is z) for

all information types under the �perfect price collusion�BNE does not take account of

possibly di¤erent beliefs (or/and risk-appetites) of the speculators. The more relevant

question is whether such Pareto-superior strategy pro�les could also be established as

BNE.

The �perfect price collusion�BNE of Propositions 1 and 2 have been obtained for

general Bernoulli utility functions and beliefs as long as asset values are non-negative.

To establish the existence of any information revealing BNE� and check for their Pareto-

superiority� is impossible at this level of generality. In what follows we construct an

illustrative example which shows the di¢ culty of transforming Pareto-superior strategy

pro�les into BNE.

Consider the game �anyf under the �Any-fraction�scenario such that i 2 fA;Bg and

V = f0; �vg with �v > 0,

�i = fL;Hg ,

Z = f0; �zg with �z > 0.

Both speculators are risk-neutral, i.e., ui (x) = x. We restrict attention to a countable set

of admissible prices

P = f"0; "1; :::g with "0 = 0 and "k < "k+1.

Next de�ne the symmetric strategy pro�le

s�� = (('��A [L] ; '
��
A [H]) ; ('

��
B [L] ; '

��
B [H])) (13)
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such that

'��A [L] (p) =

(
f0g if p = "0
[0;1) if p � "1

'��A [H] (p) = [0;1) for all p,

'��B [L] (p) =

(
f0g if p = "0
[0;1) if p � "1

'��B [H] (p) = [0;1) for all p.

The market price and allocations that correspond to s�� in state (v; �A; �B; z) 2 
 are
given as

p� [s��] (v; �A; �B; z) =

8>><>>:
"0 if (�A; �B) 2 f(H;L) ; (L;H) ; (H;H)g
"0 if (�A; �B) = (L;L) and z = 0

"1 if (�A; �B) = (L;L) and z = �z

x�A [s
��] (v; �A; �B; z) =

8>><>>:
z if (�A; �B) = (H;L)

0 if (�A; �B) = (L;H)
z
2

else

x�B [s
��] (v; �A; �B; z) =

8>><>>:
0 if (�A; �B) = (H;L)

z if (�A; �B) = (L;H)
z
2

else

Note that the price function p� [s��] is partially revealing: whenever we observe price "1,

we know that both speculators must be of type L.

The strategy pro�le (13) represents a form of cooperation between both speculators

such that whenever an L and an H-type meet the L-type would leave the whole amount

of the asset to the H-type. If the H-type appreciates the asset more than the L-type

and the partially revealing price system (here "1 > 0) is not too costly, there is scope for

welfare improvement for both speculators compared to the �perfect price collusion�BNE.

Proposition 3. Fix the game �anyf as de�ned above with s�� given by (13) and s� given

by (9).
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(i) We have UA (s��) � UA (s�) i¤

�v (�A (�v;H; L; �z)� �A (�v; L;H; �z))

� "1�A (�A = L;�B = L; z = �z) .

(ii) We have UB (s��) � UB (s�) i¤

�v (�B (�v; L;H; �z)� �B (�v;H; L; �z))

� "1�B (�A = L;�B = L; z = �z) .

(iii) Suppose that the heterogeneous priors of both speculators satisfy

�A (�v;H; L; �z) > �A (�v; L;H; �z) and �B (�v;H; L; �z) < �B (�v; L;H; �z) . (14)

Then one can always �nd a su¢ ciently small price "1 > 0 such that the strategy

pro�le s�� is Pareto-superior over the �perfect price collusion�BNE s�.

Proposition 3 shows that risk-neutral speculators who agree to disagree through their

heterogeneous beliefs (14) might want to coordinate on a Pareto-superior strategy pro�le

s�� whenever the price "1 is su¢ ciently small. The problem is that in the absence of

any commitment mechanism such coordination might not be incentive compatible, that

is, a Pareto-superior strategy pro�le s�� might fail to be a BNE. In the above example,

the speculators�information types �i = L might have a strict incentive to deviate from

'��i [L] ("0) = f0g given s���i. To be precise, the L-type of speculator A would experience
an upward-jump in his utility from demanding more than the zero amount at price "0
either when he �nds himself in state (�v; L;H; �z) or when he encounters the L-type of his

opponent B and there is strictly positive supply �z. In the former case, the L-type of A

would obtain a greater amount, i.e., �z
2
instead of 0, at a better price, i.e., zero instead of

"1. In the latter case, the L-type of A would pay zero for the amount �z instead of paying

"1 for the amount �z
2
. This gives the L-type very strong incentives to deviate from s��A ,

which can only be counteracted by attaching zero probabilities to relevant events.

More generally, it is easy to see that the �perfect price collusion�BNE action

'�i [�i] (p) = [0;1) for all p 2 P
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is for every information type �i a best response against any strategy pro�le s���i. Namely,

by choosing '�i [�i] over '
��
i [�i], information type �i will always achieve a zero price for a

(weakly) larger amount of the asset.

Proposition 4. Any Pareto-superior strategy pro�le s��� given by (13)� is also a BNE

of �anyf i¤ the speculators�heterogeneous priors satisfy, in addition to (14),

�A (�v; L;H; �z) = �A (�v; L; L; �z) = �A (0; L; L; �z) = 0 and

�B (�v;H; L; �z) = �B (�v; L; L; �z) = �B (0; L; L; �z) = 0.

For the above example, any Pareto-superior strategy pro�le s�� could thus only be

established as a BNE of �anyf under very strong (non-generic) assumptions on the spec-

ulators�beliefs. Moreover, even if the Pareto-superior strategy pro�le s�� is a BNE, the

�perfect price collusion�BNE strategy s�i would be a best response against s
��
�i. We take

these �ndings as further evidence that �perfect price collusion�BNE are a rather robust

solution for the class of games considered in this paper.

4.2 Relationship to Kyle�s (1989) original analysis

One of Kyle�s (1989) main contribution is to identify conditions which ensure the existence

of symmetric BNE given as linear demand-schedule functions11

sK =
��
fK1 [�1]

�
�12�

; :::;
�
fKN [�N ]

�
�N2�

�
such that

fKi [�i] (p) = �+ � [�i]� p for p 2 R.

Such a linear-functions BNE has very attractive features: the information type �i who is

more optimistic about the asset�s value than the information type �0i shifts the intercept of

his linear demand-schedule function upwards by � [�i]� � [�0i] > 0. In this speci�c sense,
11The other main contribution is the comparison of his �partially revealing�, �imperfect competition�

BNE with the fully revealing benchmark case of the rational expectations equilibrium in Hellwig (1980)

which obtains if the number of (informed) speculators goes to in�nity.
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di¤erent information types move the equilibrium demand into the �right�direction so that

more positive signals come with a higher demand. Key to this celebrated result is Kyle�s

combination of a CARA Bernoulli function with normally distributed asset values. The

resulting (conditional) expected utility of information type �i at any given price p

E�(�j�i)u ((v � p)xi [�i])

= �1
�
exp

�
(E (v j �i)� p)xi [�i]�

�

2
var (v j �i)x2i [�i]

�
is then maximized at the demand

x�i [�i] =
E (v j �i)� p
� � var (v j �i)

(15)

where � denotes the absolute risk aversion coe¢ cient.

The problem with the linear demand-function x�i [�i] (p) given by (15), however, is that

it excludes all assets which can be owned by speculators with limited liability. According

to (15), the information types in Kyle (1989) would only like to purchase some �nite

amount of the asset at a zero price because they do not like the risk of greater losses that

would come with a greater amount of the asset. In contrast, the driving-force behind our

�perfect price collusion�BNE is the fact that all information types would like to purchase

as much as possible of the asset at a zero price. This fact is an immediate implication

of our assumption of non-negative asset values. We consider this desire to purchase as

much of a valuable asset at a zero price as the natural scenario for any assets (e.g., shares,

bonds, etc.) that come with limited liability for speculators.

Remark 4. Although the purpose of this paper is not an in-depth investigation of

Kyle�s (1989) original analysis within his normal distribution framework, we must admit

that we are not sure in how far his �rst-order analysis adequately captures the possibility

that speculators can choose arbitrary demand-schedule correspondences rather than just

demand-schedule functions. For example, the characterization of unique market-clearing

prices through equation (39) in Kyle (1989) seems to ignore the �Any fraction�scenario

as proclaimed by Kyle�s (1989) own structural assumption K2. Under the �Any fraction�

scenario, market-clearing prices are often not unique so that Kyle�s structural assumption

K3� according to which the auctioneer chooses the minimal market-clearing price� would
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be needed to determine the resulting market price.12 We did not �nd the possibility of

multiple market-clearing prices re�ected in Kyle�s formal derivations. In a way it looks as

if we are applying Kyle�s own market microstructure assumptions more rigorously than

he did himself.

5 Concluding remarks

We have translated Kyle�s (1989) original market microstructure assumptions into a class

of Bayesian games in which di¤erent information types of speculators can purchase a risky

asset with non-negative values from a noise-trader. In contrast to the original analysis in

Kyle (1989)� which combines CARA Bernoulli functions with normally distributed asset

values� there is an unlimited demand for the asset in our model whenever the asset price

is zero. As our main �nding we have established the existence of �perfect price collusion�

BNE for two di¤erent scenarios of admissible demand schedules. Whereas all convex-

valued demand-schedule correspondences are admissible under the �Convexity�scenario,

the �Any fraction� scenario comes with the additional requirement that these convex-

valued demand-schedule correspondences must also include zero as a possible demand.

We have argued that �perfect price collusion�BNE are more plausible than any other

BNE for the class of games considered in this paper. The main reason is that a �perfect

price collusion�BNE strategy is a best response against any strategy pro�le for which at

least one opponent always wants to buy as much as possible of the asset at price zero. To

expect other speculators to demand as much as possible of the asset at price zero, is a very

natural assumption given that the asset has non-negative value for all information types.

Since the �perfect price collusion�BNE does not reveal any information, Kyle�s (1989)

market microstructure model does not seem to be well suited for generating (partially)

information revealing Bayesian Nash equilibria if the asset can only have non-negative

values.

12In our �perfect price collusion�BNE all prices clear markets in every state of the world. Even for the

Pareto-superior strategy (13) of our illustrative example all prices p � "1 clear markets in every state of
the world.
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Appendix: Formal proofs

Proof of Proposition 1. Fix s��i. If there is no information type �i who has a strict

incentive to deviate from the supposed BNE action '�i [�i], the su¢ ciency condition (8)

holds and s� must be a BNE. Suppose that �i chooses action '0i [�i] 6= '�i [�i].
Step 1. Observe at �rst that under the �Any-fraction�scenario the market price will

always be zero irrespective of the choice of '0i [�i]. To see this, note that the �Any-fraction�

scenario implies, by (2), for any action '0i [�i] that

either '0i [�i] (0) = [0; x] or 'i [�i] (0) = [0;1)

for some x � 0. Given s��i with '
�
j [�i] (0) = [0;1) the markets will thus clear in every

state at price 0 because the set (4) of potentially market-clearing demand o¤ers at zero,

given as

X (p� = 0) =

(
(xi; x�i) 2 '0i [�i] (0)� RN�1�0 j

NX
j=1

xj = z

)
,

is non-empty for every z � 0. Irrespective of any other existing market-clearing prices,

zero is always the minimal market-clearing price so that we obtain for all states

p�
�
'0i [�i] ; s

�
�i
�
(v; �1; :::; �N ; z) = 0

for any choice '0i [�i] 6= '�i [�i].
Step 2. Because we can, by Step 1, �x zero as market price, it is su¢ cient to consider

some action '0i [�i] 6= '�i [�i] such that '0i [�i] (0) = [0; �x] 6= [0;1) for some �x � 0. What
would be the optimal interval [0; �x] from the perspective of information type �i? Since

the Bernoulli utility

ui
�
(v � 0)x�i

�
[0; �x] ; s��i

�
(�)
�

increases in x�i
�
[0; �x] ; s��i

�
for all states with v; z > 0 (and is constant else), �i wants to

choose some [0; �x] that maximizes x�i
�
[0; �x] ; s��i

�
(�) for all states. But this can be achieved

by choosing

'0i [�i] (0) = [0;1) . (16)

The reason is as follows. Suppose that �i picks some '0i [�i] (0) = [0; �x] such that �x <
z
N

in some state (v; �1; :::; �N ; z). In this state his market allocation becomes

x�i
�
'0i [�i] ; s

�
�i
�
(v; �1; :::; �N ; z) = �x
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which is strictly less than if he had chosen [0;1) because of

x�i
�
[0;1) ; s��i

�
(v; �1; :::; �N ; z) =

z

N
.

If he picks instead some '0i [�i] (0) = [0; �x] with �x � z
N
, he will obtain the same allocation of

z
N
as if he had picked '0i [�i] (0) = [0;1). In other words, choosing (16) weakly dominates

any bounded interval [0; �x] as demand choice at price 0 for all states. This proves that

�i has no strict incentive to deviate from the BNE action (10) provided that the other

speculators stick to their BNE strategies s��i.��

Proof of Proposition 2. In contrast to the �Any-fraction�scenario of Proposition

1, the information type �i has now the power to shift the market price away from zero

even if the other speculators stick with s��i. To see this, note that under the �Convexity�

scenario, any actions '0i [�i] such that

'0i [�i] (0) = [x; x] or '
0
i [�i] (0) = [x;1)

for some x > 0 becomes now admissible. In that case, markets would no longer clear at

p = 0 in any state (v; �1; :::; �N ; z) such that x > z. The reason is that �i alone would

already demand a strictly higher quantity through x than the quantity z supplied by the

noise-trader.

To investigate whether �i has a strict incentive to choose '0i [�i] over '
�
i [�i], we have

thus to distinguish between two cases. In the �rst case, �i chooses some '0i [�i] such that

the price p = 0 remains the market price in all states. In the second case, �i chooses some

'0i [�i] such that the price p = 0 does no longer clear the market in all states.

Case 1. Suppose that �i chooses some '0i [�i] 6= [0;1) such that the price p = 0

remains the market price in all states (v; �1; :::; �N ; z). In this case, the proof becomes

identical to the proof of Proposition 1.

To conclude Case 1: whenever �i does not choose any action which moves the market

price away from zero, he cannot strictly improve upon the supposed BNE action '�i [�i] :

Case 2. Suppose now that �i chooses some '0i [�i] 6= [0;1) such that the price p = 0 is
no longer a market-clearing price in all states (v; �1; :::; �N ; z). Since �i wants the markets

to clear in every state in order to avoid in�nitely negative utility, he will determine a

new minimal market clearing price p0 > 0 through his choice of '0i [�i]. Such p
0 would

23

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4567777

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



be the smallest price at which markets clear in every state given the �xed pro�le s��i
which implies '��i [��i] (p

0) = RN�1�0 . Under our assumption that 0 2 Z, this p0 is uniquely
pinned down as the smallest admissible price p0 such that the demand-schedule '0i [�i] (p

0)

contains 0 as possible demand-o¤er. Formally, we have that

p0 = min fp 2 P j min'0i [�i] (p) = 0g . (17)

To see this, note that

'0i [�i] (p) = [x; x] or '
0
i [�i] (p) = [x;1)

with x > 0 implies that markets cannot clear at price p in any state (v; �1; :::; �N ; z) such

that z = 0. On the other hand, given '��i [��i] (p) = RN�1�0 for all p 2 P markets would

clear in every state at any price p satisfying

either '0i [�i] (p) = [0; x] or '
0
i [�i] (p) = [0;1) .

The price p0 de�ned by (17) is the smallest of these market-clearing prices and therefore

the market price that will be picked by the auctioneer in accordance with Assumption

K3.

Choosing any new market price p0 2 P is thus in the power of �i under the �Convexity�
scenario. The question is, does �i have any strict incentive to move the market price away

from 0 to some p0 > 0? The answer is no. Whereas he received in the supposed BNE s�

the Bernoulli utility

ui

�
(v � 0) z

N

�
(18)

in every state (�; z) of the world, he now receives

ui
�
(v � p0)x�i

�
'0i [�i] ; s

�
�i
�
(�; z)

�
. (19)

The de�nition of the new market price p0 through (17) implies, by convex-valuedness, that

either '0i [�i] (p
0) = [0; x] or '0i [�i] (p

0) = [0;1)

for some x � 0. Consequently, (18) clearly dominates (19) in every state of the world

because of

(v � p0)x�i
�
'0i [�i] ; s

�
�i
�
� 0 � (v � 0) z

N
if v � p0 or z = 0
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and

(v � p0)x�i
�
'0i [�i] ; s

�
�i
�
< (v � 0) z

N
if v > p0 and z > 0

whereby the last inequality follows from x�i
�
'0i [�i] ; s

�
�i
�
� z

N
since

x�i
�
[0; x] ; s��i

�
<

z

N
if x <

z

N
,

x�i
�
[0; x] ; s��i

�
=

z

N
if x � z

N
.

To conclude Case 2: whenever �i chooses some action against s��i that moves the

market price away from zero, he cannot strictly improve upon the supposed BNE action

'�i [�i].��

Proof of Proposition 3. Note that

Ui (s
��) � Ui (s

�)

,

E�i
��
v � p�

�
s��i ; s

��
�i
��
x�i
�
s��i ; s

��
�i
��

� E�i
��
v � p�

�
s�i ; s

�
�i
��
x�i
�
s�i ; s

�
�i
��
.

For i = A, we have

E�A ((v � p� [s��A ; s��B ])x�A [s��A ; s��B ])

= (�v � "0) �z�A (�v;H; L; �z) + (0� "0) �z�A (0; H; L; �z)

+ (�v � "0)
�z

2
�A (�v;H;H; �z) + (0� "0)

�z

2
�A (0; H;H; �z)

+ (�v � "1)
�z

2
�A (�v; L; L; �z) + (0� "1)

�z

2
�A (0; L; L; �z)

as well as

E�A ((v � p� [s�A; s�B])x�A [s�A; s�B])

= �v
�z

2
(�A (�v;H; L; �z) + �A (�v; L;H; �z) + �A (�v;H;H; �z) + �A (�v; L; L; �z)) .

Using "0 = 0 gives after straightforward calculations

UA (s
��) � UA (s

�)

,
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�v (�A (�v;H; L; �z)� �A (�v; L;H; �z))

� "1 (�A (�v; L; L; �z) + �A (0; L; L; �z))

= "1�A (�A = L;�B = L; z = �z)

For i = B, we obtain analogously

UB (s
��) � UB (s

�)

,

�v (�B (�v; L;H; �z)� �B (�v;H; L; �z))

� "1 (�B (�v; L; L; �z) + �B (0; L; L; �z))

= "1�B (�A = L;�B = L; z = �z) .

��

Proof of Proposition 4. Since the �perfect price collusion� strategy s�i is a best

response against s���i, we have that s
�� is a BNE i¤, for i 2 fA;Bg,

E�i
��
v � p�

�
s��i ; s

��
�i
��
x�i
�
s��i ; s

��
�i
��

(20)

= E�i
��
v � p�

�
s�i ; s

��
�i
��
x�i
�
s�i ; s

��
�i
��
.

Observe that the market price and allocations that correspond to (s�A; s
��
B ) in state (v; �A; �B; z) 2


 are given as

p� [s�A; s
��
B ] (v; �A; �B; z) = "0

x�A [s
�
A; s

��
B ] (v; �A; �B; z) =

(
z if �B = L
z
2

else

x�B [s
�
A; s

��
B ] (v; �A; �B; z) =

(
z
2
if �B = H

0 else

For i = A, we therefore have

E�A ((v � p� [s��A ; s��B ])x�A [s��A ; s��B ])

= (�v � "0) �z�A (�v;H; L; �z) + (0� "0) �z�A (0; H; L; �z)

+ (�v � "0)
�z

2
�A (�v;H;H; �z) + (0� "0)

�z

2
�A (0; H;H; �z)

+ (�v � "1)
�z

2
�A (�v; L; L; �z) + (0� "1)

�z

2
�A (0; L; L; �z)
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as well as

E�A ((v � p� [s�A; s��B ])x�A [s�A; s��B ])

= (�v � "0) �z�A (�v;H; L; �z) + (0� "0) �z�A (0; H; L; �z)

+ (�v � "0)
�z

2
�A (�v; L;H; �z) + (0� "0)

�z

2
�A (0; L;H; �z)

+ (�v � "0)
�z

2
�A (�v;H;H; �z) + (0� "0)

�z

2
�A (0; H;H; �z)

+ (�v � "0) �z�A (�v; L; L; �z) + (0� "0) �z�A (0; L; L; �z) .

Straightforward calculations show that equality (20) is equivalent to

(�v � "1)
�z

2
�A (�v; L; L; �z) + (0� "1)

�z

2
�A (0; L; L; �z)

= (�v � "0)
�z

2
�A (�v; L;H; �z) + (0� "0)

�z

2
�A (0; L;H; �z)

+ (�v � "0) �z�A (�v; L; L; �z) + (0� "0) �z�A (0; L; L; �z)

,

�"1 (�A (�v; L; L; �z) + �A (0; L; L; �z))

= �v (�A (�v; L;H; �z) + �A (�v; L; L; �z))

which requires

�A (�v; L;H; �z) = �A (�v; L; L; �z) = �A (0; L; L; �z) = 0

to hold because of "1; �v > 0.

For i = B, we obtain analogously

�B (�v;H; L; �z) = �B (�v; L; L; �z) = �B (0; L; L; �z) = 0.

��
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