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On the Convergence Properties of a Distributed
Projected Subgradient Algorithm
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Abstract—A weight-balanced network plays an important
role in the exact convergence of a distributed optimization
algorithm, but is not always satisfied in practice. Different
from most of existing works focusing on designing dis-
tributed algorithms, in this article, we analyze the conver-
gence of a well-known distributed projected subgradient
algorithm over time-varying general graph sequences, i.e.,
the weight matrices of the network are only required to be
row stochastic instead of doubly stochastic. We first show
that there may exist a graph sequence such that the algo-
rithm is not convergent when the network switches freely
within finitely many graphs. Then, to guarantee its conver-
gence under any uniformly jointly strongly connected graph
sequence, we provide a necessary and sufficient condition
on the cost functions, i.e., the intersection of optimal so-
lution sets to all local optimization problems is not empty.
Furthermore, we surprisingly find that the algorithm is con-
vergent for any periodically switching graph sequence, but
the converged solution minimizes a weighted sum of local
cost functions, where the weights depend on the Perron
vectors of some product matrices of the underlying switch-
ing graphs. Finally, we consider a slightly broader class of
quasi-periodically switching graph sequences, and show
that the algorithm is convergent for any quasi-periodic
graph sequence if and only if the network switches between
only two graphs. This work helps us understand impacts of
communication networks on the convergence of distributed
algorithms, and complements existing results from a differ-
ent viewpoint.

Index Terms—Communication network, constrained dis-
tributed optimization, convergence analysis, projected sub-
gradient algorithm.
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I. INTRODUCTION

IN THE past decade, distributed convex optimization has
received intensive research attention, motivated by its broad

applications in various areas including distributed estimation
[1], resource allocation [2], and machine learning [3]. The
basic idea is that in a multiagent network, all agents cooperate
to solve an optimization problem with their local cost func-
tions, constraints, and neighbors’ states. A variety of distributed
algorithms have been designed. Distributed (sub)gradients-
based algorithms have been greatly explored because they are
easy to be implemented. By performing local averaging oper-
ations and taking subgradient descent steps, a distributed sub-
gradient algorithm was proposed for unconstrained distributed
optimization problems in [4]. Then, a projected subgradient
algorithm was developed to deal with a common set constraint
in [5]. The case of nonidentical set constraints was studied
in [6] and [7]. Following that, by combining projected sub-
gradient methods and primal-dual ideas, distributed primal-dual
subgradient algorithms were designed to minimize a sum of
local cost functions with set constraints, local inequality, and
equality constraints [8]. Moreover, the algorithms have also been
explored for coupled constraints [9], [10].

The performance of a distributed algorithm is greatly af-
fected by the underlying graph of a multiagent network [11],
[12]. Since the pioneering work for distributed optimization
in [4], weight-balanced graphs have been widely employed
to design distributed algorithms [8], [10], [13], [14] because
there usually existed a common Lyapunov function to facilitate
the convergence analysis [4], [13], [15]. Furthermore, most
of (sub)gradient-based algorithms could achieve an optimal
solution under weight-balanced graphs because Perron vec-
tors of weight matrices were with identical entries [4], [6],
[7]. In [10], undirected and connected graphs were adopted
for distributed primal-dual algorithms. Based on saddle-point
dynamics, a continuous-time algorithm was proposed under
strongly connected and weight-balanced digraphs in [13]. Time-
varying weight-balanced graphs have also been utilized for the
distributed design [8], [14]. In [16], random weight-balanced
networks were applied to a distributed subgradient algorithm,
and then, the convergence was analyzed.

However, a weight-balanced graph requires the in-degree of
each node being equal to its out-degree, and is not always
practical in real applications [11]. For instance, if agents use
broadcast-based communications in a wireless network, they
neither know their out-neighbors nor are able to adjust their
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outgoing weights. Thus, the weight-balance condition is difficult
to be guaranteed in this case [7]. Motivated by the limitation,
new mechanisms have been investigated to balance graphs, and
then, under weight-unbalanced graphs, distributed algorithms
achieved exact convergence as balanced networks did [7], [17],
[18], [19]. In [19], reweighting techniques were proposed to deal
with fixed unbalanced networks, but Perron vectors of the net-
works, the global information, were required. In [15], a reweight-
ing method was applied to seeking the Nash equilibrium of a
zero-sum game problem. After that, adaptive algorithms were
explored to estimate the Perron vectors in [20] and [21], and then,
reweighting was used for the distributed design. Similar ideas
were adopted for a continuous-time algorithm in [22]. How-
ever, a number of steps was required for the estimation. Under
weight-unbalanced networks, a distributed push-sum method
was developed by combining a dual averaging algorithm with
the push-sum consensus protocol in [18]. The push-sum protocol
was integrated to continuous-time saddle point dynamics in [23]
and [24]. In [7], a distributed algorithm was proposed over
directed graphs with row stochasticity and constraint regularity,
where each agent was with a different identity, and knew the
upper bound on the network size. With a row stochastic and
a column stochastic matrices, a distributed push–pull algorithm
was designed in [17], where the gradient of an agent was pushed
to its neighbors, and the decision variable was pulled from its
neighbors.

On the other hand, an interesting question is how unbalanced
networks affect the performance of distributed algorithms. In
fact, this question can provide us with a better understanding
of existing works, and may further guide us to design effective
distributed algorithms. For instance, convergence of a distributed
projected subgradient algorithm was discussed in [6], and then,
heterogeneous stepsizes were designed to balance the network.
In distributed learning, weight-unbalanced topologies have been
explored to deal with the data heterogeneity, which means the
different solutions between individual agent and the global opti-
mization problem. By coupling the communication topology and
the data heterogeneity, communication-efficient topologies were
proposed for a distributed stochastic gradient descent algorithm
in [25]. In [26], a novel topology, named D-Clique, was designed
to deal with the data heterogeneity.

In this article, we revisit a well-known distributed projected
subgradient algorithm to minimize a sum of (nonsmooth) cost
functions with a common set constraint [5]. Compared with the
existing model in [5], the only difference is that the weight
matrices of the time-varying network are only row stochas-
tic, and not necessarily doubly stochastic. We aim to analyze
convergence properties of this algorithm under such general
network graphs. Focusing on analyzing instead of designing a
distributed algorithm, this work complements existing results
from a different perspective, and moreover, helps us understand
how the communication network affects the convergence of
distributed algorithms. Our main contributions are summarized
as follows.

1) We show that there generally exists a graph sequence such
that the algorithm is not convergent if the time-varying
network switches freely within finitely many graphs.

2) To guarantee the convergence of this algorithm for any
uniformly jointly strongly connected graph sequence, we
provide a necessary and sufficient condition, namely, the
intersection of optimal solution sets to all local optimiza-
tion problems is not empty.

3) We find that the algorithm is convergent for any peri-
odically switching graph sequence, and moreover, the
converged solution minimizes a weighted sum of the local
cost functions. In addition, we introduce a broader class of
quasi-periodic graph sequences, and show that the algo-
rithm is always convergent for any quasi-periodic graph
sequence if and only if the network switches between two
graphs.

The rest of this article is organized as follows. Some prelimi-
nary knowledge is introduced in Section II, and then, the problem
is formulated in Section III. Our main results are presented in
Sections IV, while their rigorous proofs are provided in Section
V. Following that, illustrative examples are carried out in Section
VI. Finally, Section VII concludes this article.

Notations: Let R, Rm, and Rm×n be the set of real numbers,
the set of m-dimensional real column vectors, and the set of
m-by-n dimensional real matrices, respectively. Let N be the set
of nonnegative integers. Vectors are column vectors by default.
x′ stands for the transpose of vector x. [A]ij means the (i, j)th
entry of matrix A. For a matrix X , X = [xij ] means its (i, j)th
entry being xij . The inner product of x and y is defined by x′y.
Let ‖ · ‖, ‖ · ‖1 be the Euclidean norm and l1-norm of a vector,
respectively. For a matrix X ∈ Rm×n, ‖X‖∗ denote its nuclear
norm, i.e., the sum of its singular values. Denote dist(x,Ω) as
the distance from a point x to a set Ω (that is, dist(x,Ω) �
infy∈Ω ‖y − x‖).

II. PRELIMINARY KNOWLEDGE

In this section, we introduce some basic concepts related to
convex analysis and graph theory.

A. Convex Analysis

A set Ω ⊂ Rm is convex if λx+ (1− λ)y ∈ Ω for all x, y ∈
Ω and λ ∈ [0, 1]. For a closed convex set Ω ⊂ Rm, we define
PΩ(·) : Rm → Ω as a projection operator which maps x ∈ Rm

to a unique pointPΩ(x) such thatPΩ(x) = argminy∈Ω‖x− y‖.
By [5, Lemma 1], we have

‖PΩ(x)− y‖ ≤ ‖x− y‖ ∀x ∈ Rm ∀y ∈ Ω (1)

and moreover

‖PΩ(x)− y‖2 ≤ ‖x− y‖2 − ‖x− PΩ(x)‖2

∀x ∈ Rm ∀y ∈ Ω. (2)

A function f : Ω → R is convex if Ω is a convex set, and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

∀x, y ∈ Ω, ∀θ ∈ [0, 1].

Furthermore, it is strictly convex if the strict inequality holds
whenever x 
= y and θ ∈ (0, 1). If gf (x) ∈ Rm satisfies

f(y)− f(x) ≥ (y − x)′gf (x)
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then gf (x) is the subgradient of f at x. Denoted by ∂f(x) the
set of all subgradients of f at x.

B. Graph Theory

The interaction topology of a multiagent network can be
modeled by a digraph G(V, E), where V is the node set, and
E is the edge set. Then, a nonnegative weight matrix A = [aij ]
can be associated with G, where aij > 0 if and only if (j, i) ∈ E .
Conversely, a graph G can also be associated with a nonnegative
matrix A. Node j is a neighbor of i, and can send informa-
tion to i if aij > 0. Graph G is said to be weight-balanced
if
∑

j∈V aij =
∑

j∈V aji for i ∈ V , and is weight-unbalanced
otherwise. A path from i1 to ip is defined by an edge se-
quence (i1, i2), (i2, i3), . . . , (ip−1, ip) ∈ E with distinct nodes
i1, . . . , ip. G is strongly connected if there exists at least a path
between every pair of nodes. If a network is time varying,
we denote G(V, E(k)) or G(k) as the graph at time slot k.
Furthermore, the joint graph over the time interval [k1, k2) is
given by G([k1, k2)) � G(V,⋃k∈[k1,k2)

E(k)).
A vector is said to be stochastic if it is with nonnegative entries

and the sum of its entries is 1. Furthermore, it is also positive if
all entries of the vector are positive. A matrix is row (column)
stochastic if all of its row (column) vectors are stochastic, and is
doubly stochastic if it is both row and column stochastic. A row
stochastic matrix is also sometimes simply called a stochastic
matrix. The following result, collected from [15, Lemma 5.3],
addresses the relationship of positive stochastic vectors and
stochastic matrices.

Lemma 1: For any positive stochastic vector μ ∈ Rn, there
must be a stochastic matrix A = (aij) ∈ Rn×n such that μ′A =
μ′, and moreover, the graph associated with A is strongly con-
nected.

Let B ∈ Rn×n be a stochastic matrix, and GB be the associ-
ated graph. It follows from the Perron–Frobenius theorem [27]
that there is a unique positive stochastic left eigenvector μ(B)
of B associated with eigenvalue 1 if GB is strongly connected.
We call μ(B) the Perron vector of B.

III. FORMULATION AND ALGORITHM

In this section, we revisit a projected subgradient algorithm
for a constrained distributed optimization problem, and then,
give the problem statement.

Consider a network of n agents connected by a time-varying
digraph G(V, E(k)) (or simply G(k)), where V = {1, . . . , n}
and E(k) ⊂ V × V . For each i ∈ V , there is a local (nonsmooth)
cost function fi : Rm → R and a feasible constraint set X ⊂
Rm. All agents cooperate to minimize the global cost function∑

i∈V fi(x) in X . To be strict, the problem can be formulated as

min
∑
i∈V

fi(x), s.t. x ∈ X (3)

where x is the decision variable.
Similar to [5] and [28], we consider a set constraint X in (3).

Thus, the problem is more general with practical applications.
We should mention that all results in this article hold in the
absence of X .

Let xi(k) be the estimation for a solution to (3) by the agent
i. Then, a distributed algorithm is said to achieve a solution to
(3) if for any initial condition xi(0) ∈ Rm, limk→∞ ‖xi(k)−
xj(k)‖ = 0, and moreover, there exists x∗ ∈ X∗ such that
limk→∞ ‖xi(k)− x∗‖ = 0, where

X∗ =

{
z | z = argminx∈X

∑
i∈V

fi(x)

}
.

To ensure the well-posedness of (3), we make the following
standard assumptions.

Assumption 1: (Convexity) For each i ∈ V , fi is a convex
function on an open set containing X , and X is a closed convex
set.

Assumption 2: (Boundedness of Subgradients) For each i ∈
V , the subgradient set of fi is bounded over X , i.e., there exists
a scalar L > 0 such that

‖d‖ ≤ L, ∀d ∈ ∂fi(x) ∀x ∈ X. (4)

Assumption 3: (Connectivity) The graph sequence G(k) is
uniformly jointly strongly connected (UJSC), i.e., there exist an
integerB > 0 such that the joint graphG([k, k +B)) is strongly
connected for k ∈ N.

Assumption 4: (Weight Rule)
1) The weight matrix A(k) = [aij(k)] associated with G(k)

is stochastic, i.e.,
∑

j∈V aij(k) = 1 for i ∈ V and k ∈ N.
2) There are self-loops in all G(k). Furthermore, if aij(k) >

0, then it is lower bounded by a constant 0 < η < 1. To
be specific, aij(k) ≥ η if aij(k) > 0, and aii(k) ≥ η for
i, j ∈ V and k ∈ N.

Note that (3) is a well-known constrained distributed opti-
mization problem [5], [28], [29], and a pioneering distributed al-
gorithm for the formulation is the projected subgradient method,
which combines an average step with a local projected gradient
update step [5]. For the agent i, the specific form of this algorithm
is given by

vi(k) =
∑
j∈V

aij(k)xj(k)

xi(k + 1) = PX(vi(k)− αkdi(k)) (5)

where di(k) ∈ ∂fi(vi(k)), and αk > 0 is the stepsize. To guar-
antee the convergence of (5), the following assumption is
made [5].

Assumption 5: (Stepsize Rule)
∑∞

k=0 αk = ∞, and more-
over,

∑∞
k=0 α

2
k < ∞.

Remark 1: In fact, Assumptions 1–5 have also been employed
in [5], [8], and [30]. As a comparison, we only suppose that
the weight matrix A(k) is row stochastic instead of doubly
stochastic, i.e., the graph may be weight unbalanced. Thus, the
considered problem is more general.

The following result, proved in [5], shows a convergence
property of (5).

Proposition 1: Let Assumptions 1–5 hold. If A(k) is also
column stochastic for k ∈ N, then the algorithm (5) achieves a
solution to (3).

Proposition 1 indicates the convergence of (5) under graphs
with doubly stochastic weight matrices. Following that, great
efforts have been paid to develop distributed algorithms over
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weight-balanced graphs [8], [9], [13], [31]. Furthermore, new
methods have been proposed to avoid the weight-balance as-
sumption including the push-sum protocol [18] and the push–
pull method [17]. An interesting question is how networks affect
the performance of a distributed algorithm. In this article, taking
(5) as a starting point, we explore its convergence under general
graphs, i.e., weight matrices of the multiagent network are only
row stochastic instead of doubly stochastic. To be specific, we
are interested in the following three questions.

1) Is algorithm (5) still convergent under general graphs?
2) If it is, which solution does it converge to? If not, under

what condition, it is convergent?
3) Is there any class of graph sequences under which algo-

rithm (5) is convergent?

IV. MAIN RESULTS

In this section, we present the main results on the convergence
of (5) under general graph sequences. At first, we show that there
generally exists a graph sequence such that (5) is not convergent.
Then, we provide a necessary and sufficient condition to guaran-
tee its convergence. Finally, we establish its convergence under
periodic and quasi-periodic graph sequences.

A. Basic Results

Define y(k) = 1
n

∑
i∈V xi(k) as the average of agents’ esti-

mations. The following lemma, proved in Section V-B, shows
consensus results of (5).

Lemma 2: Consider algorithm (5). Under Assumptions 2–4,
the following statements hold.

1) If the stepsize satisfies limk→∞ αk = 0, then

lim
k→∞

‖xi(k)− y(k)‖ = 0 ∀i ∈ V.
2) If the stepsize satisfies

∑∞
k=0 α

2
k < ∞, then

∞∑
k=0

αk‖xi(k)− y(k)‖ < ∞ ∀i ∈ V.

Clearly, (5) can be rewritten as

xi(k + 1) =
∑
j∈V

aij(k)xj(k) + ωi(k) (6)

where ωi(k) = PX(vi(k)− αkdi(k))− vi(k). In fact, (6) is a
consensus dynamics with disturbance ωi(k). Combining (17)
with limk→∞ αk = 0, we obtain limt→∞ ωi(k) = 0. For such
a dynamics, consensus can be achieved under an UJSC graph
sequence as discussed in [32] and [33]. However, Lemma 2
2), indicating the consensus rate, has not been proved in [32]
and [33].

Referring to [6, Th. 1], we have the following result for (5)
under a fixed digraph.

Lemma 3: Consider the graph sequence given by G(k) = GA

for k ∈ N, where GA is a strongly connected graph associated
with weight matrixA = [aij ]. Suppose that

∑
j∈V aij = 1 for all

i ∈ V . Under Assumptions 1, 2 and 5, the algorithm (5) achieves
a solution to

min
∑
i∈V

μi(A)fi(x) s.t. x ∈ X (7)

where μ(A) = [μ1(A), . . . , μn(A)]
′ is the Perron vector of A

such that μ(A)′A = μ(A)′.
Lemma 3 implies that (5) optimizes a weighted sum of the

local cost functions under a fixed weight-unbalanced network.
Based on the result, reweighting techniques were proposed to
deal with the weight-unbalanced graphs, and relevant works can
be found in [6], [15], and [19].

Remark 2: Lemma 3 discusses fixed graph sequences. In fact,
the result can be directly extended as follows. Let GA1

, . . . ,GAp

be strongly connected graphs with an identical Perron vector
μ(A). Consider a time-varying graph sequence G(k), which
switches within {GA1

, . . . ,GAp
}, i.e., G(k) ∈ {GA1

, . . . ,GAp
}

for all k ∈ N. If Assumptions 1, 2, 4, and 5 hold, then algorithm
(5) achieves a solution to (7). The proof is similar to that of [6,
Th. 1], and is omitted here.

B. Convergence Analysis

In this section, we analyze whether (5) is still convergent in the
absence of doubly stochastic weight matrices for the network.

Let GA1
, . . . ,GAp

be strongly connected graphs with
weight matrices A1, . . . , Ap, respectively. We define μ(Al) =
[μ1(Al), . . . , μn(Al)]

′ as the Perron vectors of Al for l ∈
{1, . . . , p}, and moreover

X∗
µ(Al)

�
{
z | z = argminx∈X

∑
i∈V

μi(Al)fi(x)

}
. (8)

Then, we have the following result, whose proof can be found
in Section V-C.

Theorem 1: Let Assumptions 1, 2, 4(1), and 5 hold. Con-
sider a time-varying graph G(k), which switches within
{GA1

, . . . ,GAp
}, i.e., G(k) ∈ {GA1

, . . . ,GAp
} for all k ∈ N. If⋂p

l=1 X
∗
µ(Al)

= ∅, then there exists a graph sequence {G(k)}
such that algorithm (5) is not convergent.

It follows from Lemma 3 that (5) converges to a consensus so-
lution in X∗

µ(Al)
if G(k) = GAl

for all k ∈ N. As a result, xi(k)

intends to oscillate if G(k) switches within {GA1
, . . . ,GAp

}.
This leads to the non-convergent result due to

⋂p
l=1 X

∗
µ(Al)

= ∅.
Clearly, Theorem 1 indicates that there exist switching graph

sequences such that algorithm (5) is not convergent. Moreover,
its proof provides such a sequence. To the best of our knowledge,
the result has not appeared in any existing literature. In fact,
Theorem 1 is the basis for the analysis of remaining results in
this article.

C. Condition for Convergence

Here, we explore a condition to guarantee the convergence of
(5), and present the main result in the following theorem, whose
proof is given in Section V-D.

Theorem 2: Let Assumptions 1–5 hold. Then, the algorithm
(5) always achieves a solution to (3) for any UJSC graph se-
quence {G(k)} if and only if

⋂
i∈V X

∗
i 
= ∅, where

X∗
i = {z | z = argminx∈Xfi(x)} . (9)

Remark 3: Consider G(k) switching within {GA1
, . . . ,GAp

},
where GAl

is a strongly connected graph for l ∈ {1, . . . , p}.
From the proof of Theorem 2, if the weight matrix Al associated
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with GAl
can be chosen freely under Assumptions 3 and 4, then⋂p

l=1 X
∗
µ(Al)

= ∅ if and only if
⋂

i∈V X
∗
i = ∅. This implies that

the Assumption
⋂

i∈V X
∗
i = ∅ in Theorem 1 can be cast into⋂p

l=1 X
∗
µ(Al)

= ∅ in some sense.
Remark 4: Theorem 1 provides a necessary and sufficient

condition for the convergence of (5), where necessity may
follow from Theorem 1 by contradiction. However, it is not so
straightforward because it fails for the assumption

⋂p
l=1 X

∗
µ(Al)

in Theorem 1. Thus, it is required to construct graphs such
that

⋂p
l=1 X

∗
µ(Al)

= ∅ by
⋂

i∈V X
∗
i = ∅. For the sufficiency, it

is considerable that all agents achieve a consensus solution in⋂
i∈V X

∗
i because the agent i intends to achieve consensus with

its neighbors, and meanwhile, forces its state xi(k) to be in
X∗

i . However, its proof is also not straightforward because the
graphs switch freely. Its novelty is given as follows. Referring
to [34],

⋂
i∈V X

∗
i = ∅ means that there is no data heterogeneity.

Distributed algorithms have been proposed to deal with the data
heterogeneity [34], [35]. However, existing works neither have
adopted the condition for weight-unbalanced graph sequences,
nor have found that it was a sufficient condition for the conver-
gence of (5).

It is worthwhile to mention that Theorem 2 is an exten-
sion of results for the convex intersection computation prob-
lem [36], [37] as follows. In a network of n nodes, all
agents attempt to seek a consensus point in

⋂
i∈V Ωi dis-

tributedly, where agent i only knows its local convex set Ωi,
and

⋂
i∈V Ωi 
= ∅. Suppose that

∑∞
k=0 αk = ∞. By the algo-

rithms proposed in [36] and [37], the goal is achieved under
Assumptions 3 and 4. Define fi(x) = dist2(x,Ωi) and X ∈
Rm. Then, the convex intersection computation problem can
be cast into (3). The assumption

⋂
i∈V Ωi 
= ∅ in [36] and [37]

is a special case
⋂

i∈V X
∗
i 
= ∅ here. Therefore, the sufficiency

in Theorem 2 is an extension for convergence results shown
in [36] and [37], and the necessity has not appeared in existing
works.

D. Periodic Graph Sequences

Theorems 1 and 2 indicate that the convergence of (5) cannot
be guaranteed in general if the graph sequence {G(k)} can be
chosen and switched freely. However, is it still convergent for
some special graph sequences? In this subsection, we investigate
the convergence of (5) under periodic and quasi-periodic graph
sequences.

Let GAl
be a graph associated with weight matrix Al for

l ∈ {1, . . . , p}, where p ≥ 2. Consider G(k) switching periodi-
cally within {GA1

, . . . ,GAp
}. To be specific, the graph sequence

is given by G(tp+ l − 1) = G(l − 1) = GAl
for all t ∈ N. For

simplicity, we write the sequence as

GA1
→ · · · → GAp

→ GA1
→ · · · → GAp

→ · · · .

Let μ1, μ2, . . . , μp be Perron vectors of

(ApAp−1 · · ·A1), (Ap−1Ap−2 · · ·A1Ap), . . .

(A1ApAp−1 · · ·A2)

respectively. Then, we have the following result, whose proof is
provided in Section V-E.

Theorem 3: Let Assumptions 1–5 hold. If the set constraint
X is compact and the stepsize sequence {αk} is nonincreasing,
then the algorithm (5) achieves a solution to

min
∑
i∈V

1

p
(μ1

i + · · ·+ μp
i )fi(x), s.t. x ∈ X (10)

where μl
i is the ith entry of μl.

Remark 5: In Theorem 3, the assumption that {αk} is non-
increasing is adopted to guarantee M0 being bounded in (30),
and thus, it can be relaxed by

∑∞
k=0(α2k − α2k+1) < ∞. For

instance, there are only finite k such that αk+1 > αk.
Remark 6: Theorem 3 indicates that (5) is convergent under

a periodically switching graph sequence {G(k)}, and moreover,
the converged solution minimizes a weighted sum of local cost
functions, where the weights depend on the Perron vectors of
some product matrices of the underlying periodically switching
graphs.

In fact, periodic graph sequences have been applied to mul-
tiagent systems. For instance, the consensus problem was ad-
dressed for a class of feedback nonlinear multiagent systems
under periodic networks [38]. It studied the stability of a con-
sensus dynamics under periodic graphs in [39].

Theorem 3 may lead to some applications. For instance, (5)
may also be convergent even though underlying graphs in a
sequence are weight unbalanced. If a graph sequence is periodic
and μl

i = μl
j in (10) for all i, j ∈ V , then (5) achieves the exact

convergence. Furthermore, the result provides a way to design
heterogenous stepsizes to balance the sequences, and achieves
the exact convergence under any periodic sequences. Similar
to [25] and [26], our results may have potential applications to
deal with the data heterogeneity in distributed learning.

Because the joint graph G([tp, (t+ 1)p)) is time-invariant
at each time interval [tp, (t+ 1)p), (5) is convergent under a
periodic graph sequence by Lemma 3. However, it should be
noted that Theorem 3 is not so straightforward. Intuitively, we
may think that (5) tends to achieve a solution to

min
∑
i∈V

μ̂ifi(x), s.t. x ∈ X (11)

where μ̂ = [μ̂1, . . . , μ̂n]
′ is the Perron vector of (A1A2 · · ·Ap).

Clearly, the solution set to (11) is generally different from that of
(10), which makes a contradiction. Take p = 2 for interpretation.
Consider fi(x) being strictly convex. Then, there is a unique
solution to any weighted sum of the local cost functions. If
(5) achieves a solution to a weighted optimization problem,
limk→∞ xi(k) is independent on the initial state. As a result,
(5) reaches the same solution under both graph sequences

GA1
→ GA2

→ GA1
→ GA2

→ · · ·
and

GA2
→ GA1

→ GA2
→ GA1

→ · · · .
However, the Perron vectors of A1A2 and A2A1 are generally
not identical, which leads to (11) with different solutions under
the aforementioned two sequences. This implies the incorrect-
ness of (11). By the proof of Theorem 3, we conclude that
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∑p
l=1 μ

l is independent of the initial point of the graph sequence,
which verifies the correctness of Theorem 3.

In [16], the authors considered the weight matrices A(k)
drawn independently from a probability space, and explored
convergence properties of a distributed subgradient algorithm.
It was shown that (5) achieved an optimal solution to (3) with
probability 1 if weight matrices A(k) were doubly stochastic
with probability 1 and the mean connectivity graph was strongly
connected. Intuitively, we can infer that convergence of (5) is de-
pendent on the expectation of the graph sequence. Specifically, if
the graph sequence switches randomly between{GA1

, . . . ,GAp
}

by a uniform distribution. Then, (5) reaches a solution to

min
∑
i∈V

μe
i fi(x), s.t. x ∈ X (12)

where μe = [μe
1, . . . , μ

e
n]

′ is the Perron vector of the expectation
for

∑p
l=1

1
pAl. Clearly, for (10) and (12), it cannot always hold

that 1
p (μ

1
i + · · ·+ μp

i ) = μe
i . Thus, under periodic and random

graph sequences, convergence properties of (5) are very differ-
ent.

It follows from Theorem 3 that a periodic graph sequence
is a sufficient condition to guarantee the convergence of (5). It
is natural to consider whether the condition is also necessary.
We relax the periodic condition slightly, and define a broader
class of quasi-periodic graph sequences as follows. Let GAl

be
a graph associated with weight matrix Al for l ∈ {1, . . . , p},
where p ≥ 2. {G(k)} is called a quasi-periodic sequence if it
switches within {GA1

, . . . ,GAp
} at each time interval [tp, (t+

1)p) for t ∈ N, but the order of GAl
can be changed over t.

For instance, we consider p = 3. Then, we can take the graph
sequence as GA1

→ GA2
→ GA3

at the time interval [0, 3), and
GA1

→ GA3
→ GA2

at the time interval [3, 6). The following
theorem, proved in Section V-F, addresses a property of (5) under
quasi-periodic graph sequences.

Theorem 4: Let Assumptions 1–5 hold. Suppose that the set
constraint X is compact, the stepsize sequence {αk} is nonin-
creasing, and

⋂
i∈V X

∗
i = ∅. Then, algorithm (5) is convergent

for any quasi-periodic graph sequence if and only if p = 2.
Moreover, if p = 2, (5) achieves a solution to

min
∑
i∈V

1

2
(μ1

i + μ2
i )fi(x), s.t. x ∈ X (13)

where μ1
i , μ2

i are the ith entries of Perron vectors of A2A1 and
A1A2, respectively, and A1 and A2 are the adjacency matrices
of the two graphs.

Under some specific graph sequences, algorithm (5) can also
be convergent. For instance, in a sequence, all graphs are the
same, all graphs have a same Perron vector, or different orders
of the sequence give a same Perron vectors. However, it should
be noted that in Theorem 4, it is required that under any graph
sequences, the algorithm is convergent. Thus, the result holds.

Remark 7: By Theorem 3, the optimization problem (10)
relies on the order of the graph sequence at each time interval
[tp, (t+ 1)p) if p ≥ 3. With the help of Theorem 1, Theorem 4
can be obtained.

At each time interval [tL, (t+ 1)L) for t ∈ N, we consider a
graph sequence switching freely between {GA1

,GA2
, . . . ,GAp

},

where p ≥ 2 and L ≥ p. Furthermore, we take the frequency of
GAi

be pi. Then, by Theorems 3 and 4, the following statements
hold:

1) If the graph sequence is periodic, then (5) converges to a
solution of (10).

2) If p = 2 and L = 2, the algorithm always achieves a
solution to (13).

3) If p > 2 and L ≥ p, then there exits a sequence such that
(5) is not convergent.

Here, we relax the periodic graph in another way. Let GAl

be a graph associated with weight matrix Al for l ∈ {1, . . . , p},
where p ≥ 2. Consider G(k) switching within {GA1

, . . . ,GAp
}

at each time interval [tD, (t+ 1)D), where D > p. However,
GAl

may appear with different frequencies at time intervals
[tD, (t+ 1)D) for t ∈ N. For instance, when D = 3 and p = 2,
we can take the graph sequence as GA1

→ GA1
→ GA2

at the
time interval [0, 3), and GA1

→ GA2
→ GA2

at the time interval
[3, 6). In this case, we have the following corollary.

Corollary 1: Let Assumptions 1–5 hold. Suppose that⋂
i∈V X

∗
i = ∅. If Al can be chosen freely, then there exists a

graph sequence such that the Algorithm (5) is not convergent.
The main idea on the proof focuses on discussing the Perron

vector at each time interval [tD, (t+ 1)D). It is similar to that
of the case of p ≥ 3 in Theorem 4, and is omitted here.

Remark 8: Theorem 4 and Corollary 1 indicate that (5) is
not convergent in general if a periodic graph sequence is with
a slight modification. Therefore, the periodic condition is very
important to guarantee the convergence of (5).

V. PROOFS

In this section, we introduce several useful lemmas, and then,
prove the results presented in the last section.

A. Supporting Lemmas

Referring to [4] and [15], we define the transition matrix as

Φ(k, s) = A(k)A(k − 1) · · ·A(s)

for s, k ∈ N with k ≥ s, where Φ(k, k) = A(k). Then, Φ(k, s)
is a stochastic matrix. In light of [4, Lemma 2], we have the
following result.

Lemma 4: Under Assumptions 3 and 4, [Φ(s+ (n− 1)B −
1, s)]ij ≥ η(n−1)B for all i, j ∈ V and s ∈ N.

The following lemma, found from [40, Lemma 3], will be
used for the consensus analysis.

Lemma 5: For μ = [μ1, . . . , μn]
′ ∈ Rn, we define g(μ) =

max1≤i,j≤n ‖μi − μj‖. If P = [pij ] ∈ Rn×n is a stochas-
tic matrix, then g(Pμ) ≤ τ(P )g(μ), where τ(P ) = 1−
mini,j

∑n
s=1 min{pis, pjs}.

We introduce two lemmas about infinite series for the conver-
gence analysis. The first one is a deterministic version of Lemma
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11 on page 50 in [41, Lemma 11, p. 50], while the second one
is collected from [5, Lemma 7].

Lemma 6: Let {ak}, {bk}, and {ck} be nonnegative se-
quences with

∑∞
k=0 bk < ∞. If ak+1 ≤ ak + bk − ck holds for

all k ∈ N, then the limit limk→∞ ak exists and is a finite number.
Lemma 7: Let 0 < β < 1 and {γk} be a positive scalar se-

quence.
1) If limk→∞ γk = 0, then limk→∞

∑k
s=0 β

k−sγs = 0.
2) If

∑∞
k=0 γk < ∞, then

∑∞
k=0

∑k
s=0 β

k−sγs < ∞.
Similar to [4, Lemma 6], we have the following result for (5).

Since it will be frequently used later, we provide a concise proof
here.

Lemma 8: Let xi(k) be generated by Algorithm (5). Suppose
that Assumptions 1, 2, and 4(1) hold. For z ∈ X and k ∈ N, we
have

‖xi(k + 1)− z‖2 ≤
∑
j∈V

aij(k)‖xj(k)− z‖2 + α2
k L2

− 2αk(fi(vi(k))− fi(z)). (14)

Proof: Clearly, (5) can be rewritten as

xi(k + 1) = vi(k)− αkdi(k) + ϕi(k)

where ϕi(k) = PX(vi(k)− αkdi(k))− (vi(k)− αkdi(k)).
Recalling (2) gives

‖xi(k + 1)− z‖2 ≤ ‖vi(k)− αkdi(k)− z‖2 − ‖ϕi(k)‖2

≤ ‖vi(k)− z‖2 + α2
k‖di(k)‖2

− 2αk(fi(vi(k))− fi(z))− ‖ϕi(k)‖2.
(15)

Because the norm square function is convex∑
j∈V

aij(k)‖xj(k)− z‖2 ≥ ‖vi(k)− z‖2.

By combining (4) and (15), the conclusion follows. �

B. Proof of Lemma 2

Consider m = 1 to simplify the proof. Otherwise, the Kro-
necker product can be adopted when necessary. By (6), we have

x(k + 1) = A(k)x(k) + ω(k)

= Φ(k, s)x(s) +
k−1∑
r=s

Φ(k, r + 1)ω(r) + ω(k) (16)

where x(k) = [x1(k), . . . , xn(k)]
′, and ω(k) = [ω1(k), . . . ,

ωn(k)]
′. Recalling (1) yields

‖ωi(k)‖ ≤ ‖vi(k)− αkdi(k)− vi(k)‖ ≤ αkL. (17)

Take h(k) = maxi,j∈V ‖xi(k)− xj(k)‖ and T = (n− 1)B.
It follows from (16), Lemma 5, and g(μ+ ν) ≤ g(μ) +
2maxi ‖νi‖ that

h(s+ (t+ 1)T ) ≤
s+(t+1)T−1∑

r=s+tT

2Lαr

+ τ (Φ(s+ (t+ 1)T − 1, s+ tT ))h(s+ tT ). (18)

In light of Lemma 4, Φ(s+ (t+ 1)T − 1, s+ tT ) ≥ ηT , and
then, τ(Φ(s+ (t+ 1)T − 1, s+ tT )) ≤ 1− ηT . Defineβs,t =

∑s+(t+1)T−1
r=s+tT αr. By (18), we obtain

h(s+ (t+ 1)T ) ≤ (1− ηT )h(s+ tT ) + 2Lβs,t

≤ (1− ηT )t+1h(s) +

t∑
r=0

2L(1− ηT )t−rβs,r. (19)

If limt→∞ αt = 0, then limt→∞ βs,t = 0. Due to Lemma
7(1), limt→∞

∑t
r=0(1− ηT )t−rβs,r = 0. Clearly, limt→∞(1−

ηT )t+1h(s) = 0. Thus, limk→∞ h(k) = 0. By the definition
of y(k), h(k) ≥ ‖xi(k)− y(k)‖, and then, limk→∞ ‖xi(k)−
y(k)‖ = 0.

Combining (19) with 2αs+tTβs,r ≤ α2
s+tT + β2

s,r, we derive

∞∑
k=0

αkh(k) =
∞∑
t=0

T−1∑
s=0

αs+tTh(s+ tT )

≤
T−1∑
s=0

∞∑
t=0

[
αs+tT (1− ηT )th(s) +

t−1∑
r=0

(1− ηT )(t−1)−rβ2
s,rL

+α2
s+tT

t−1∑
r=0

(1− ηT )(t−1)−rL

]
.

Because of
∑∞

k=0 α
2
k < ∞, αk is bounded, and then,∑∞

t=0 αs+tT (1− ηT )th(s) is also bounded. Obviously,

β2
s,t ≤

∑s+(t+1)T−1
r=s+tT 2α2

r . By
∑∞

k=0 α
2
k < ∞,

∑∞
t=0 β

2
s,t <

∞. Recalling Lemma 7(2) gives
∑∞

t=0

∑t−1
r=0(1−

ηT )(t−1)−rβ2
s,r L < ∞. In addition,

∑t−1
r=0(1− ηT )(t−1)−rL ≤

L/ηT , and then,
∑∞

t=0 α
2
s+tT

∑t−1
r=0(1− ηT )(t−1)−rL < ∞.

Therefore,
∑∞

k=0 αkh(k) < ∞, and moreover,
∑∞

k=0 αk‖xi(k)
− y(k)‖ < ∞. This completes the proof. �

C. Proof of Theorem 1

Because of the convexity of fi and μi(Al) > 0,∑
i∈V μi(Al)fi(x) is a convex function, and as a result, X∗

µ(Al)

is a closed convex set. Define x(k) = [x′
1(k), . . . , x

′
n(k)]

′.
It follows from Lemma 3 that (5) converges to a point in
X∗

µ(Al)
under the fixed graph sequence G(k) = GAl

for k ∈ N.
Thus, for any ε > 0 and initial point x(0) ∈ Rmn, there is
Tl(ε, x(0)) ∈ N such that

dist(xi(t), X
∗
µ(Al)

) < ε ∀i ∈ V ∀t ≥ Tl(ε, x(0)).

Due to
⋂p

l=1 X
∗
µ(Al)

= ∅, there exists X∗
µ(Ai)

such that

X∗
µ(Ai)

⋂(⋂
j 
=i

X∗
µ(Aj)

)
= ∅.

In the following, we discuss two cases including
⋂

j 
=i X
∗
µ(Aj)


=
∅ and

⋂
j 
=i X

∗
µ(Aj)

= ∅, respectively.

Case 1: Consider X∗
sc �

⋂
j 
=i X

∗
µ(Aj)


= ∅. Define d �
dist(X∗

µ(Ai)
,
⋂

j 
=i X
∗
µ(Aj)

) > 0. It follows from the sufficiency
of Theorem 2 that there exists a switching graph sequence Gsc

such that algorithm (5) converges to X∗
sc.

We construct time sequences {tk} and {sk}, and a switching
graph sequence {G(k)} as follows.
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Let s0 = 0, t0 = s0 and x(0) ∈ Rmn. Furthermore

s1 = T1(d/3, x(t0)), t1 = t0 + s1

and G(k) = GAi
for k = t0 + 1, . . . , t1

s2 = T2(d/3, x(t1)), t2 = t1 + s2,

and G(k) = Gsc for k = t1 + 1, . . . , t2

...

s2k+1 = T1(d/3, x(t2k)), t2k+1 = t2k + s2k+1

and G(k) = GAi
for k = t2k + 1, . . . , t2k+1

s2k+2 = T2(d/3, x(t2k+1)), t2k+2 = t2k+1 + s2k+2

and G(k) = Gsc for k = t2k+1 + 1, . . . , t2k+2. (20)

Then, ‖x(t2k+1)− x(t2k+2)‖ > d/3 for all k ∈ N. Therefore,
x(t) is not convergent.

Case 2: Consider
⋂

j 
=i X
∗
µ(Aj)

= ∅. Clearly, there are k, l ∈
{1, . . . , p} such that

d � dist(X∗
µ(Ak)

, X∗
µ(Al)

) > 0.

By a similar procedure as (20), we can also construct a graph
sequence switching between GAk

and GAl
such that x(t) is not

convergent.
By combining the aforementioned results, the conclusion

holds. �

D. Proof of Theorem 2

(Necessity). The necessity is shown by contradiction. To be
specific, if

⋂
i∈V X

∗
i = ∅, there always exists a graph sequence

such that (5) is not convergent.
By Lemma 1, for any positive stochastic vector μ ∈ Rn,

there exists a stochastic matrix A, whose Perron vector is μ.
Moreover, the graphGA associated withA is strongly connected.
Here, we take two positive stochastic vectors μ(A1) and μ(A2)
associated with matrices A1 and A2, and graphs GA1

and GA2

as follows. Define X∗
µ(A1)

and X∗
µ(A2)

by (8). Take μ(A1) =

[1/n, . . . , 1/n]. In light of Lemma 3, all agents converge to a
point x̂ in X∗

µ(A1)
if G(k) = GA1

. If
⋂

i∈V X
∗
i = ∅, then there

must be i0 ∈ V and x̃ ∈ X∗
i0

such that fi0(x̃) < fi0(x̂). Take
μ(A2) such that

μi0(A2) (fi0(x̂)− fi0(x̃)) >
∑

i∈V,i
=i0

μi(A2)(fi(x̃)− fi(x̂))

where μi(A2) is the ith entry of μ(A2). Consequently,
∑

i∈V
μi(A2)fi(x̃)<

∑
i∈V μi(A2)fi(x̂). Therefore,X∗

µ(A1)

⋂
X∗

µ(A2)

= ∅. In view of Theorem 1, there exists a graph sequence such
that (5) is not convergent.

(Sufficiency): The sufficiency is proved by the following three
steps.

Step 1: We first show that {xi(k)} is bounded.

Define X∗
s �

⋂
i∈V X

∗
i 
= ∅ and take x∗ ∈ X∗

s . By setting
z = x∗ in (14), we derive

‖xi(k + 1)− x∗‖2 ≤
∑
j∈V

aij(k)‖xj(k)− x∗‖2 + α2
k L2

− 2αk(fi(vi(k))− fi(x
∗)).

(21)
Define ξ(k) = maxi∈V ‖xi(k)− x∗‖2. Then

ξ(k + 1) ≤ ξ(k) + α2
k L2 − 2αk min{fi(vi(k))− fi(x

∗)}.
Notice that fi(vi(k))− fi(x

∗) ≥ 0 and
∑∞

k=0 α
2
k L2 < ∞.

It follows from Lemma 6 that there exists ξ∗ such that
limk→∞ ξ(k) = ξ∗. As a result, {xi(k)} is bounded.

Additionally

max
i∈V

‖xi(k)− x∗‖ −max
i,j∈V

‖xi(k)− xj(k)‖

≤ min
i∈V

‖xi(k)− x∗‖ ≤ max
i∈V

‖xi(k)− x∗‖.
Recalling limk→∞ maxi,j∈V ‖xi(k)− xj(k)‖ = 0 gives

lim
k→∞

‖xi(k)− x∗‖ = ξ∗ ∀i ∈ V.
Clearly, y(k) is also bounded. In light of limk→∞ ‖xi(k)−

y(k)‖ = 0, the sequence {‖y(k)− x∗‖} is convergent for any
x∗ ∈ X∗

s .
Step 2: Define ζi(k) = ‖xi(k)− x∗‖2, and analyze ζi(k).
Recalling (21), we obtain

ζi(k + 1) ≤
∑
j∈V

[Φ(k, s)]ijζj(s) + α2
k L2

+
k−1∑
r=s

∑
j∈V

[Φ(k, r + 1)]ijα
2
r L2 − 2αk (fi(vi(k))− fi(x

∗)

−
k−1∑
r=s

∑
j∈V

2[Φ(k, r + 1)]ijαr (fj(vj(r))− fj(x
∗)) .

(22)
Clearly

−
k−1∑
r=s

∑
j∈V

[Φ(k, r + 1)]ijαr (fj(vj(r))− fj(x
∗))

= −
k−1∑
r=s

∑
j∈V

[Φ(k, r + 1)]ijαr (fj(vj(r))− fj(y(r)))

−
k−1∑
r=s

∑
j∈V

[Φ(k, r + 1)]ijαr (fj(y(r))− fj(x
∗)) .

(23)
By (4), ‖fj(vj(r))− fj(y(r))‖ < L‖vj(r)− y(r)‖. In view of
Lemma 2(2), we obtain∥∥∥ k−1∑

r=s

∑
j∈V

[Φ(k, r + 1)]ijαr (fj(vj(r))− fj(y(r)))
∥∥∥ < ∞.

Step 3: We show that xi(k) converges to a point in X∗
s by

contradiction.
For any x ∈ X and ε > 0 such that dist(x,X∗

i ) > ε, there
must be δ > 0 such that fi(x)− fi(x

∗) > δ due to the convexity
and continuity offi. By Lemma 4,Φ(k, s) ≥ η(n−1)B for allk ≥
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s+ (n− 1)B − 1. For any ε > 0, we supposedist(y(r), X∗
j ) >

ε. For k ≥ s+ (n− 1)B

−
k−1∑
r=s

∑
j∈V

[Φ(k, r + 1)]ijαr (fj(y(r))− fj(x
∗))

≤ −
k−(n−1)B∑

r=s

∑
j∈V

[Φ(k, r + 1)]ijαr (fj(y(r))− fj(x
∗))

≤ − δη(n−1)B

k−(n−1)B∑
r=s

αr.

(24)
Substituting (23) and (24) into (22), we obtain limk→∞ ζ(k) =
−∞ by Assumption 5. This contradicts with the boundedness
of xi(k) proved in Step 1. Thus

lim
k→∞

inf dist(y(k), X∗
s) = 0.

Since y(k) is bounded, the sequence has at least one limit
point. In view of limk→∞ inf dist(y(k), X∗

s) = 0, one of the
limit points, denoted by y∗, must be in X∗

s . As shown in
Step 1, the sequence {‖y(k)− y∗‖} is convergent, and as a
result, the limit point is unique, i.e., limk→∞ y(k) = y∗. By
limk→∞ ‖xi(k)− y(k)‖ = 0, we conclude that for all i ∈ V ,
xi(k) converges to y∗ ∈ X∗

s . Thus, the proof is completed. �

E. Proof of Theorem 3

Consider p = 2 for simplicity, and note that the idea can be
directly extended to the case of p > 2. We prove the theorem by
the following three steps.

Step 1: Analyze the sequences {x(2k)} and {x(2k + 1)}.
Without loss of generality, we consider G(2k) = GA1

and
G(2k + 1) = GA2

for k ∈ N. Recalling (14) gives

‖xi(2k + 1)− z‖2 ≤
∑
j∈V

[A1]ij‖xj(2k)− z‖2

+ α2
2k L2−2α2k (fi(vi(2k))−fi(z))

(25)
and moreover

‖xi(2k + 2)− z‖2 ≤
∑
j∈V

[A2]ij‖xj(2k + 1)− z‖2

+ α2
2k+1 L2 − 2α2k+1 (fi(vi(2k + 1))− fi(z)) . (26)

Notice that
∑

j∈V [A2]ij = 1. Substituting (25) into (26), we
obtain

‖xi(2k + 2)− z‖2 ≤
∑
j∈V

[A2A1]ij‖xj(2k)− z‖2 + (α2
2k

+ α2
2k+1)L

2 −
∑
j∈V

2α2k[A2]ij(fj(vj(2k))− fj(z))

− 2α2k+1(fi(vi(2k + 1))− fi(z)).
(27)

Let μ1 = [μ1
1, . . . , μ

1
n]

′, μ2 = [μ2
1, . . . , μ

2
n]

′ be the Perron vec-
tors of A2A1 and A1A2 such that (μ1)′A2A1 = (μ1)′ and
(μ2)′A1A2 = (μ2)′, respectively. As a result

[(μ1)′A2](A1A2) = [(μ1)′A2]

and

[(μ2)′A1](A2A1) = [(μ2)′A1].

Therefore, (μ1)′A2 and (μ2)′A1 are the Perron vectors of A1A2

and A2A1, respectively. Because the joint graph GA1
∪ GA2

is
strongly connected, the Perron vectors of both A2A1 and A1A2

are unique by the Perron–Frobenius theorem. Thus

(μ2)′ = (μ1)′A2 and (μ1)′ = (μ2)′A1.

Define X∗
p = {z | z = argminx∈X

∑
i∈V

1
2 (μ

1
i + μ2

i )fi(x)}.
Let x∗ ∈ X∗

p and take z = x∗. Multiplying μ1
i to both sides of

(27) and summing all i ∈ V , we obtain∑
i∈V

μ1
i ‖xi(2k + 2)− x∗‖2 ≤

∑
i∈V

μ1
i ‖xi(2k)− x∗‖2

+
∑
i∈V

μ1
i (α

2
2k + α2

2k+1)L
2 −

∑
i∈V

2μ2
iα2k (fi(vi(2k))

−fi(x
∗))−

∑
i∈V

2μ1
iα2k+1 (fi(vi(2k + 1))− fi(x

∗)) .

By a similar procedure for discussing ‖xi(2k + 2)− x∗‖, we
also have∑

i∈V
μ2
i ‖xi(2k + 3)− x∗‖2 ≤

∑
i∈V

μ2
i ‖xi(2k + 1)− x∗‖2

+
∑
i∈V

μ2
i (α

2
2k+1 + α2

2k+2)L
2

−
∑
i∈V

2μ1
iα2k+1 (fi(vi(2k + 1))− fi(x

∗))

−
∑
i∈V

2μ2
iα2k+2 (fi(vi(2k + 2))− fi(x

∗)) .

Define χk =
∑

i∈V μ
1
i ‖xi(2k)− x∗‖2 +∑

i∈V μ
2
i ‖xi(2k +

1)− x∗‖2. Notice that
∑

i∈V μ
1
i = 1 and

∑
i∈V μ

2
i = 1. Com-

bining the aforementioned two inequalities, we derive

χk+1 ≤ χk + (α2
2k + 2α2

2k+1 + α2
2k+2)L

2

−
∑
i∈V

2(μ1
i + μ2

i )α2k (fi(vi(2k))− fi(x
∗))

−
∑
i∈V

2(μ1
i + μ2

i )α2k+1 (fi(vi(2k + 1))− fi(x
∗))

+M1(k) +M2(k) (28)

where

M1(k) =
∑
i∈V

2μ1
i [α2k (fi(vi(2k))− fi(x

∗))

− α2k+1 (fi(vi(2k + 1))− fi(x
∗))]

and moreover

M2(k) =
∑
i∈V

2μ2
i [α2k+1 (fi(vi(2k + 1))− fi(x

∗))

−α2k+2 (fi(vi(2k + 2))− fi(x
∗))] .

Step 2: Analyze M1(k) and M2(k).
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For all N ∈ N, we have

N∑
k=0

M1(k)=

N∑
k=0

∑
i∈V

2μ1
i [α2k (fi(vi(2k))−fi(vi(2k + 1)))

+(α2k − α2k+1) (fi(vi(2k + 1))− fi(x
∗))] .

(29)
By (4), we obtain

α2k

∥∥fi(vi(2k))− fi(vi(2k + 1))
∥∥

≤ α2kL‖vi(2k)− vi(2k + 1)‖
≤ α2kL (‖vi(2k)− xi(2k)‖+ ‖vi(2k + 1)− xi(2k + 1)‖

+‖xi(2k)− xi(2k + 1)‖) .
It follows from Lemma 2(2) that

lim
N→∞

N∑
k=0

∑
i∈V

α2kL (‖vi(2k)− xi(2k)‖

+‖vi(2k + 1)− xi(2k + 1)‖) < ∞.

According to (5) and (1)

‖xi(2k)− xi(2k + 1)‖ ≤ ‖xi(2k)− vi(2k)‖
+‖xi(2k + 1)− vi(2k)‖ ≤ ‖xi(2k)− vi(2k)‖+ α2kL.

In view of Assumption 5

lim
N→∞

N∑
k=0

∑
i∈V

α2k‖xi(2k)− xi(2k + 1)‖ < ∞.

As a result

lim
N→∞

N∑
k=0

∑
i∈V

μ1
iα2k

∥∥fi(vi(2k))− fi(vi(2k + 1))
∥∥ < ∞.

Revisit the last term of (29). Notice that (5) implies that both
xi(k) and y(k) are bounded because X is a compact set. Due
to the continuity of fi, there is a positive constant M0 such that
‖fi(vi(k))− fi(x

∗)‖ ≤ M0. Because αk is nonincreasing, we
have

N∑
k=0

∑
i∈V

μ1
i (α2k − α2k+1)

∥∥fi(vi(2k + 1))− fi(x
∗)
∥∥

≤
N∑

k=0

(α2k − α2k+1)M0

≤ (α0 − α1)M0 +
N∑

k=1

(α2k−1 − α2k+1)M0

< α0M0 < ∞. (30)

Therefore, limN→∞
∑N

k=0 M1(k) is bounded. By a
similar procedure for discussing M1(k), we also have
limN→∞

∑N
k=0 M2(k) < ∞.

Step 3: We show that xi(k) converges to a point in X∗
p.

Note that

fi(vi(k))−fi(x
∗)=fi(vi(k))−fi(y(k)) + fi(y(k))− fi(x

∗).

By rearranging the terms of (28) and summing these relations
over the time interval k = 0 to N , we have

χN+1 ≤ χ0 +
N∑

k=0

(α2
2k + 2α2

2k+1 + α2
2k+2)L

2

−
2N+1∑
k=0

∑
i∈V

2(μ1
i + μ2

i )αk (fi(vi(k))− fi(y(k)))

−
2N+1∑
k=0

∑
i∈V

2(μ1
i + μ2

i )αk (fi(y(k))− fi(x
∗))

+
N∑

k=0

(M1(k) +M2(k)) . (31)

In light of (4) and Lemma 2(2), we obtain

lim
N→∞

−
2N+1∑
k=0

∑
i∈V

2(μ1
i + μ2

i )αk (fi(vi(k))− fi(y(k)))

≤ lim
N→∞

2N+1∑
k=0

∑
i∈V

2(μ1
i + μ2

i )αk‖vi(k)− y(k)‖ < ∞.

Due to the convexity and continuity of fi, for any x∗ ∈ X∗
p and

ε > 0 such that dist(y(k), X∗
p) > ε, there exists δ > 0 such that∑

i∈V 2(μ1,i + μ2,i)αk(fi(y(k))− fi(x
∗)) > δ. Then

2N+1∑
k=0

∑
i∈V

2(μ1,i + μ2,i)αk (fi(y(k))− fi(x
∗))

≥
2N+1∑
k=0

∑
i∈V

2δ(μ1,i + μ2,i)αk.

Under Assumption 5, if dist(y(k), X∗
p) > ε for any ε > 0, the

right hand of (31) tends to−∞ asN tends to infinity. This contra-
dicts with χN+1 ≥ 0. Therefore, limk→∞ inf dist(y(k), X∗

p) =
0. Since y(k) is bounded, the sequence has at least a limit
point. In view of limk→∞ inf dist(y(k), X∗

p) = 0, one of the
limit points, denoted by y∗, must be in X∗

p.
It follows from (28) that

lim
k→∞

supχk ≤ lim
k→∞

inf χk.

As a result, the scalar sequence χk is convergent. Then, the
limit point y∗ is unique. Due to limk→∞ ‖xi(k)− y(k)‖ = 0,
the sequence {xi(k)} converges to the same point y∗ in X∗

p.
This completes the proof.

F. Proof of Theorem 4

We first show that if p = 2, (5) is convergent under quasi-
periodic graph sequences. Here, notations are the same as those
in the proof of Theorem 3. Consider G(k) switching between
GA1

and GA2
. For quasi-periodic graphs, there are two cases:

G(2k) = GA1
andG(2k + 1) = GA2

;G(2k) = GA2
andG(2k +

1) = GA1
. If G(2k) = GA1

and G(2k + 1) = GA2
. As proved in
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(28), we have

χk+1 ≤ χk + (α2
2k + 2α2

2k+1 + α2
2k+2)L

2

−
∑
i∈V

2(μ1
i + μ2

i )α2k (fi(vi(2k))− fi(x
∗))

−
∑
i∈V

2(μ1
i + μ2

i )α2k+1 (fi(vi(2k + 1))− fi(x
∗))

+M1(k) +M2(k). (32)

If G(2k) = GA2
and G(2k + 1) = GA1

, by a similar way for
discussing χk, we obtain

χ̃k+1 ≤ χ̃k + (α2
2k + 2α2

2k+1 + α2
2k+2)L

2

−
∑
i∈V

2(μ1
i + μ2

i )α2k (fi(vi(2k))− fi(x
∗))

−
∑
i∈V

2(μ1
i + μ2

i )α2k+1 (fi(vi(2k + 1))− fi(x
∗))

+M3(k) +M4(k) (33)

where χ̃k =
∑

i∈V μ
2
i ‖xi(2k)− x∗‖2 +∑

i∈V μ
1
i ‖xi(2k +

1)− x∗‖2
M3(k) =

∑
i∈V

2μ2
i [α2k (fi(vi(2k))− fi(x

∗))

−α2k+1 (fi(vi(2k + 1))− fi(x
∗))]

and moreover

M4(k) =
∑
i∈V

2μ1
i [α2k+1 (fi(vi(2k + 1))− fi(x

∗))

−α2k+2 (fi(vi(2k + 2))− fi(x
∗))] .

Define ιk = max{χk, χ̃k}, M5(k) = max{M1(k),M3(k)}
and M6(k) = max{M2(k),M4(k)}. Note that M3(k) and
M4(k) have similar properties as M1(k) proved in Section V-E.
Combining (32) and (33), we derive

ιk+1 ≤ ιk + (α2
2k + 2α2

2k+1 + α2
2k+2)L

2

−
∑
i∈V

2(μ1
i + μ2

i )α2k (fi(vi(2k))− fi(x
∗))

−
∑
i∈V

2(μ1
i + μ2

i )α2k+1 (fi(vi(2k + 1))− fi(x
∗))

+M5(k) +M6(k).

Clearly, limN→∞
∑∞

k=0(M5(k) +M6(k)) < ∞. With a
similar procedure for discussing χk and xi(k) in Section V-E,
we prove that xi(k) converges to a point in X∗

p for all i ∈ V , and
X∗

p is the optimal solution set to

min
∑
i∈V

1

2
(μ1

i + μ2
i )fi(x), s.t. x ∈ X

whereμ1
i andμ2

i are the ith entries of Perron vectors ofA2A1 and
A1A2, respectively, and moreover, A1 and A2 are the adjacency
matrices of the two graphs.

In the following, we show that there exists a graph sequence
such that (5) is not convergent if p ≥ 3. We consider p = 3 for
simplicity, and note that the result can be easily extended to cases
of p > 3. In view of Theorem 3, for the periodic graph sequence

with the order GA1
→ GA2

→ GA3
, (5) converges to X∗

sp, where
X∗

sp is the solution set of

min
∑
i∈V

(μ1
i + μ2

i + μ3
i )fi(x), s.t. x ∈ X

where μ1, μ2, and μ3 are the Perron vectors of A3A2A1,
A2A1A3, and A1A3A2, respectively. Similarly, for the peri-
odic graph sequence with the order GA1

→ GA3
→ GA2

, (5)
converges to X̃∗

sp, where X̃∗
sp is the solution set of

min
∑
i∈V

(μ̃1
i + μ̃2

i + μ̃3
i )fi(x), s.t. x ∈ X

where μ̃1, μ̃2, and μ̃3 are the Perron vectors of A2A3A1,
A3A1A2, andA1A2A3, respectively. If

⋂
i∈V X

∗
i = ∅, it follows

from Remark 3 that there exist (μ1
i + μ2

i + μ3
i ) and (μ̃1

i + μ̃2
i +

μ̃3
i ) such that X∗

sp

⋂
X̃∗

sp = ∅. Because the weight matrices can
be chosen freely under Assumptions 3 and 4, there will always
be A1, A2, and A3 such that X∗

sp

⋂
X̃∗

sp = ∅.
By a similar way used in the proof of Theorem 1, we con-

struct time sequences {tk} and {sk}, and a graph sequence
{G(k)} switching between GA1

→ GA2
→ GA3

and GA1
→

GA3
→ GA2

at time intervals [3t, 3(t+ 1)). Then, (5) is not
convergent under {G(k)}. This completes the proof. �

VI. NUMERICAL SIMULATIONS

Here, an illustrative example is provided to verify the theo-
retical results presented in Section IV.

Similar to [42] and [43], we solve a low-rank matrix com-
pletion problem in a distributed way by (5). There is a network
of n agents that obtains incomplete and corrupted observations
of a matrix Zo ∈ Rm1×m2 . Agent i knows observations from
a set Ωi, and all agents cooperate to recover a true low-rank
matrix Z based on their observations and a low-rank constraint.
In practice, the low-rank constraint can be approximated by
a nuclear norm constraint. To be strict, the problem can be
formulated as

min
1

N

∑
i∈V

∑
(s,r)∈Ωi

([Zi]s,r − [Zo]s,r)
2 , s.t. ‖Z‖∗ ≤ σ

(34)
where σ is a positive real constant, N is the number of observa-
tions, and ‖ · ‖∗ is the nuclear norm.

Take m1 = 120, m2 = 200, σ = 20, and αk = 1/k0.6. The
observations in Zo are generated from the interval [1, 5] by a
uniform distribution. Moreover, there are 50 agents in total. We
generate three graphs GA1

, GA2
and GA3

randomly, where all
their nodes communicate with others with probabilities 0.2, 0.3,
and 0.4, respectively. Moreover, Assumptions 3 and 4 hold. For
the algorithm (5), all entries of Zi(0) are set as zero.

Let gA(Z) be the global cost of (34) under a fixed graph
GA. Furthermore, we generate a Erdos–Renyi graph Ger, which
is an undirected random graph, and each node communicates
with others with probability 0.3. Fig. 1 shows trajectories of
c(k) = gAi

(Z(k))− ger(Z(k)). The different converged points
indicate that (5) achieves a biased optimizer under a weight-
unbalanced graph.

Fig. 2 presents the trajectories of e(k) = 1
n2

∑
i∈V ‖xi(k)−

y(k)‖ under GA1
, GA2

, GA3
, and Ger. Due to limk→∞ e(k) = 0,
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Fig. 1. Trajectories of c(k) under GA1
, GA2

, and GA3
.

Fig. 2. Consensus results of (5) under GA1
, GA2

, GA3
, and Ger.

Fig. 3. Trajectory of r(k) and e(k) under Gs(k).

(5) achieves consensus even though the graphs are only row
stochastic.

For the illustration of Theorem 2, we consider all agents
knowing Zo to guarantee

⋂
i∈V X

∗
i 
= ∅. Furthermore, we define

a graph sequence Gs(k), which switches freely between GA1
,

GA2
, and GA3

. Let Z∗ be the optimal solution to (34), and it is
computed by a centralized projected gradient descent algorithm.
Define r(k) = |g(Z(k))− g(Z∗)|. Fig. 3 shows the trajectories
of r(k) and e(k) under Gs(k), and it indicates the consensus and
convergence of (5) in this case.

Finally, we consider the following two cases.
1) The graph sequence switches periodically as

GA1
→ GA2

→ GA3
→ GA1

→ GA2
→ GA3

→ · · · .

Fig. 4. Trajectory of g(Z) under the two sequences.

2) The graph sequence switches freely between GA1
→ GA2

and GA2
→ GA1

at each time interval [2t, 2(t+ 1)) for all
t ∈ N.

Fig. 4 shows trajectories of g(Z) under the aforementioned
two sequences. Clearly, the algorithm (5) achieves convergence,
and the results imply the correctness of Theorems 3 and 4.

VII. CONCLUSION

This article investigated convergence properties of a dis-
tributed projected subgradient algorithm whose graphs may be
time-varying and weight-unbalanced. First, it was proved that
there might exist a graph sequence such that the algorithm was
not convergent if the network switched freely within finitely
many graphs. Then, to guarantee the convergence of this al-
gorithm for any uniformly strongly connected graph sequence,
it was provided a necessary and sufficient condition, i.e., the
intersection of optimal solution sets to all local optimization
problems was not empty. Following that, it was found that the
algorithm was convergent under periodically switching graph
sequences, and optimized a weighted sum of local cost func-
tions. Furthermore, it was shown that the algorithm was always
convergent for any quasi-periodic graph sequence if and only if
the network switched between two graphs. Finally, numerical
simulations on a low-rank matrix completion problem were
carried out for illustration.
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[5] A. Nedić, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and op-
timization in multi-agent networks,” IEEE Trans. Autom. Control, vol. 55,
no. 4, pp. 922–938, Apr. 2010.

[6] P. Lin, W. Ren, and Y. Song, “Distributed multi-agent optimization sub-
ject to nonidentical constraints and communication delays,” Automatica,
vol. 65, pp. 120–131, 2016.

Authorized licensed use limited to: CAS Academy of Mathematics & Systems Science. Downloaded on December 07,2023 at 02:04:22 UTC from IEEE Xplore.  Restrictions apply. 



7558 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 12, DECEMBER 2023

[7] V. S. Mai and E. H. Abed, “Distributed optimization over directed graphs
with row stochasticity and constraint regularity,” Automatica, vol. 102,
pp. 94–104, 2019.

[8] M. Zhu and S. Martínez, “On distributed convex optimization under
inequality and equality constraints,” IEEE Trans. Autom. Control, vol. 57,
no. 1, pp. 151–164, Jan. 2012.

[9] Y. Zhu, W. Ren, W. Yu, and G. Wen, “Distributed resource allocation over
directed graphs via continuous-time algorithms,” IEEE Trans. Syst., Man,
Cybern., Syst., vol. 51, no. 2, pp. 1097–1106, Feb. 2021.

[10] X. Zeng, P. Yi, Y. Hong, and L. Xie, “Distributed continuous-time algo-
rithms for nonsmooth extended monotropic optimization problems,” SIAM
J. Control Optim., vol. 56, no. 6, pp. 3973–3993, 2018.
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