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a b s t r a c t 

We study the impact of a reference point determined by social comparison on wealth 

growth and inequality. The reference point of each individual investor contains both per- 

sonal and social components. Whereas the personal component depends on the investor’s 

own history of wealth, the social component is determined by the wealth level of other 

investors in her network. In the benchmark case without social interactions and under the 

assumption of homogeneous preferences, each investor’s expected wealth grows at a com- 

mon rate, the wealth gaps widens and the Gini coefficient remains constant. On the other 

hand, if the reference point is determined solely by social interactions, then it is possible 

that the network simultaneously experiences high wealth growth and a reduction in in- 

equality. Finally, for the general case where the reference point incorporates both personal 

and social components and some extensions of the model, we numerically show that in- 

creasing the degree of social interactions is beneficial for both increasing wealth growth 

and reducing inequality. 

© 2021 Elsevier B.V. All rights reserved. 
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In financial markets, investors’ decisions are often influenced not only by their individual experiences in the market 
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depending on the investor’s own wealth history and a social component depending on the wealth levels of other investors 

in her network. Our main objective is to study the impact of social interactions on wealth growth and inequality in such a

network model. 

Our model builds on key ingredients of the (cumulative) prospect theory of Kahneman and Tversky (1979) and 

Tversky and Kahneman (1992) . Their pioneering work aims to capture investors’ psychology in decision-making, which is 

ignored by the classical expected utility theory. One of the main elements of prospect theory is that people evaluate their

assets on gains and losses with respect to a reference point. 1 We incorporate a reference-dependent and loss averse value

function into a multi-investor, infinitely repeated portfolio choice model in an environment of social networks. All investors 

are assumed to be myopic 2 in the sense that, at the beginning of each period, every investor maximizes an S-shaped, ref-

erence dependent value function for the current time period in a pure-investment framework with exogenous asset prices 

based on her wealth level and her current reference point. 3 At the end of each time period, investors adjust their reference

points based on their own wealth levels as well as the wealth levels of the neighbors in their social network and proceed

forward to make the optimal investment decision for the next period. This process repeats infinitely many times. 

The most prominent feature of our model is that investors’ reference points contain a social component. The reference 

points impact each investor’s investment behavior and the investment outcome under this behavior in turn impacts in- 

vestors’ reference point formation. The wealth dynamics and reference points hence evolve jointly and mutually depend on 

one another. We are interested in the impact of the reference point formation on the long run evolution of wealth growth

and inequality as measured by the wealth gap and the Gini coefficient of the network. 

Since our investors are myopic, we start with a single-period behavioral portfolio choice model for a single investor with 

an arbitrary reference point. Such a problem was investigated in greater generality for example in He and Zhou (2011a) . We

here do not take probability weighting into account in order to get more explicit results for a general position of the refer-

ence point. We find that the optimal investment strategy (OIS) is piecewise linear and increasing in the distance between 

current wealth and reference point. Besides obtaining the OIS, we are also able to determine conditions under which a loss

averse investor with an S-shaped utility function would long, respectively short a risky asset. Whereas a classical expected 

utility maximizer would always take a long position in a stock with a positive expected excess return, this is not necessarily

the case if the utility function is not concave. 

We then extend the single-period setting for a single-investor with an arbitrary reference point to a multi-period model 

for a social network of multiple investors who form their respective reference points as a convex combination of both 

personal and social components. We consider two possibilities for the personal component: Either the reference point is 

updated recursively as a function of the investor’s previous reference point and current wealth as was suggested in Arkes 

et al. (2008, 2010) , or the reference point is updated non-recursively taking the whole history of wealth levels into account

as was proposed by Baucells et al. (2011) . These models have already been incorporated into dynamic behavioral portfolio 

selection models, for example, the recursive updating rule was employed in Shi et al. (2015b) and He and Yang (2019) ,

and the non-recursive updating rule in Strub and Li (2020) . A reference point containing a social component on the other

hand has not yet been studied in the existing literature on portfolio selection to the best of our knowledge, although there

have been some empirical work in other fields, for example, Viglia and Abrate (2014) study the effect of social comparison

on reference point formation in a service context. We propose that such a reference point satisfies the two properties

of “Upward-Looking” - each investor’s reference point is never strictly lower than her own wealth - and “Moderation” - 

the difference between each investor’s wealth and her reference point, is in some sense proportional to the wealth gap 

to the richest person within her network. These properties are motivated by empirical evidence, see, e.g., Collins (1996) ,

Duesenberry (1949) , or Ferrer-i-Carbonell (2005) . 

We first consider the case where the reference point is solely determined by the personal component and there are no

social interactions. This case serves as a benchmark for our later analysis. We find that, in this case, each investor’s wealth

grows at a common rate and inequality as measured by the generalized Gini coefficient remains constant over time. 

We then investigate in detail the case where the reference point is determined by social comparison alone, independent 

of each investor’s history of wealth. We first show that a positive wealth gap is necessary and sufficient for a sustained

wealth growth in this case. We then consider a specific reference point formation rule, where the reference point is a

convex combination of the individual investor’s wealth level and the maximum wealth level among all the members in her 

network. We call the weight given to the maximum wealth level in her network the coefficient of aspiration as it represents

how strong the investors aspire to achieve high social status. We establish a threshold for the coefficient of aspiration which

determines the long run behavior of the network and which can be computed in semi-closed form. If the coefficient of

aspiration is above the threshold, each investor’s expected wealth grows indefinitely with a common growth rate and the 

expected wealth gap diverges. We find that it is possible to have both wealth growth and a reduction of inequality in the
1 The other three main elements of prospect theory are: (i) People are risk averse on gains and risk seeking on losses; (ii) People are loss averse, i.e., 

they are more sensitive to losses than gains; and (iii) People overweight small probabilities and underweight large probabilities. In this paper, we do take 

into account reference-dependence, loss aversion, and diminishing sensitivity to gains and losses. We ignore probability distortions for simplicity. 
2 Myopia of investors can be justified by empirical findings showing that investors often focus on their investment in the short term without taking into 

account the long-term returns ( Kahneman and Lovallo, 1993; Thaler et al., 1997 ). 
3 We herein consider a social network consisting of a finite number of investors not representing the whole economy. In such a setting, the assumption 

of exogenous asset prices is reasonable. 
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presence of social interactions. On the other hand, if the coefficient of aspiration is below the threshold, each investor’s 

expected wealth converges to a common finite level and the expected wealth gap disappears. 

Finally, we consider a general reference point containing both personal and social components. We term the weight 

given to the social component the degree of social interactions and investigate numerically how it influences the long term 

dynamics of wealth growth and inequality. Our main finding is that, within our model, increasing the degree of social in-

teractions typically is beneficial for achieving higher wealth growth and lower inequality simultaneously. In addition, we 

also consider several extensions of the model such as a no-bankruptcy constraint, heterogeneous risk attitude, and hetero- 

geneous loss aversion, and find that the main finding is robust with regards to these extensions. The intuition behind this

finding is as follows. Social interactions move the reference point upward from the benchmark case where the reference 

point does not include a social component. For an investor whose current wealth lies above the personal component of the

reference point, taking social interactions into account thus typically leads to a reduction in the distance between wealth 

and reference point and, therefore, to smaller investments in the risky asset. These tend to be the richer investors of the

network. Vice versa, for those investors whose wealth lies below their personal component of the reference point, taking 

the social component into account increases the distance between their wealth and the reference point and thus leads to 

higher investments in the risky asset. The social component thus tends to cause richer investors to reduce their appetite for

risk because of a fear of loosing their position in the social network and falling below the reference point, while it simulta-

neously increases the risky investments of the poorer investors because they want to catch up with the richer ones. Because

excess returns of the risky asset are positive on average, this leads to a reduction in inequality. 

We remark that empirical evidence shows that richer investors typically invest more in stocks than poorer ones, and 

that this is a possible factor behind rising inequality, see, e.g., Fagereng et al. (2020) . The reasons allowing richer investors

to hold more stocks than poorer investors are manifold and integrating them into our model goes well beyond the scope of

this paper. We stress that it is not our objective to build a model which replicates empirical wealth dynamics, but, rather,

to study the effect of social interaction in isolation of other possible constraints on investors strategies. 

1.1. Related literature 

Behavioral Portfolio Choice. Behavioral portfolio choice problems under the framework of prospect theory have been 

widely studied under different market settings, see for example Barberis et al. 2001; Barberis and Xiong 2009; Berkelaar 

et al. 2004; Carassus and Rásonyi 2015; He and Zhou 2011a; 2011b; Jin and Zhou 2008; Shi et al. 2015a; 2015b; Strub

and Li 2020 . 4 For the single-period setting, Bernard and Ghossoub (2010) consider a no-shorting constraint and probability 

weighting, ( He and Zhou, 2011a ) study a setting with probability weighting and a general value function, and ( Pirvu and

Schulze, 2012 ) investigate a model where the excess return follows an elliptical distribution. Most of the existing literature 

focuses on the qualitative analysis of the properties of the OIS due to the difficulty of deriving an analytical optimal solution,

although ( He and Zhou, 2011a ) are able to derive optimal solutions in analytical form for the two special cases where the

value function is piecewise linear or the initial wealth equals the reference point. In this paper, we consider a market model

where short-selling is allowed, the utility is isoelastic, there is no probability weighting and the excess return is allowed to

follow a general distribution. While in some aspects less general than the existing literature, this specification allows us to 

obtain the OIS in semi-analytical form and to provide conditions on whether it is optimal to long or short the stock. 

Reference Point Formation. The reference point plays a central role in prospect theory. In our model, it refers to a target

or aspiration level that an individual investor aspires to attain. Several dynamic reference point adaptation rules have been 

proposed in the behavioral portfolio choice literature to model how investors adjust their reference points. With the notable 

exception of the endogenous reference point formation suggested by K ̋oszegi and Rabin (2006) and the models of mental

reference point adjustment of He and Strub (2020) , most of the literature considers a reference point determined solely by

the history of wealth levels (see, e.g., Arkes et al. 2008; 2010; Baucells et al. 2011; Chiyachantana and Yang 2010; Gomes

2005; Shi et al. 2015b; Strub and Li 2020; Thaler and Johnson 1990 ). 5 However, in the context of social networks, people

inevitably compare themselves to others. Our reference point adaptation rule differs from the existing ones as it depends 

not only on the investor’s own wealth level, but also on wealth levels of the neighbors in her social network. 

Wealth Growth and Inequality. The relation between wealth growth and inequality is generally complex and has received 

much attention in the literature (e.g. Bogliacino and Ortoleva 2013; Corneo and Jeanne 2001; Hopkins and Kornienko 2006; 

Knell 1999; Li and Zou 1998; Persson and Tabellini 1994; Rauscher 1997 ). Whereas most of the existing literature studies

expected utility maximizers, investors in our model exhibit reference dependence and loss aversion. Most closely related 

to our work is the recent paper by Genicot and Ray (2017) , which develops a theory of socially determined aspirations. In

analogy to Genicot and Ray (2017) , we also study a model where reference points, wealth growth and inequality evolve

jointly and interact with one another. The most notable difference to the pioneering work of Genicot and Ray (2017) is that

they consider a deterministic equilibrium framework with consumption, whereas our model is based on a pure investment 

economy with exogenously determined, stochastic asset prices. Consequently, the wealth trajectories and reference points of 

the investors in our model are not deterministic, but evolve as stochastic processes. In contrast to the findings of Genicot and
4 A behavioral portfolio theory on the foundation of prospect theory was also developed in Shefrin and Statman (20 0 0) . 
5 There also have been some (empirical) work studying how the current reference price depends on the past sequence of prices in marketing science, 

e.g., see Ackerman and Perner (2004) ; Baucells and Hwang (2017) ; Dickson and Sawyer (1990) ; Kahneman et al. (1993) ; Nasiry and Popescu (2011) . 
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Table 1 

Model Parameters and Notations. 

Symbol Definition 

θ The amount invested in the risky asset 

α The parameter of risk attitude 

β The degree of social interactions 

k The coefficient of loss aversion 

B The reference point 

B̄ The relative wealth W 0 − B 

R The excess return of the risky asset in the single-investor, single-period model 

V (·) The behavioral evaluation function 

θ ∗ The optimal investment strategy (OIS) 

γ ∗ The piecewise linearity coefficient in the OIS 

γ+ ( γ−) The OIS (the negative value of the OIS) if B̄ = 1 ( ̄B = −1 ) 

{ R (t) } t≥0 The i.i.d. excess returns of the risky asset 

F (·) The cumulative distribution function (CDF) of the excess return 

f (·) The probability density function (PDF) of the excess return 

μ The mean of the excess return 

λ The coefficient of aspiration 

φλ(t) � R (t) | γ−| λ
ξλ � E [(1 − φλ(t)) 1 { φλ(t) ≤1 } ] , where 1 {·} is the indicator function. 

ηλ � E [(φλ(t) − 1) 1 { φλ(t) ≥1 } ] 
n Network size 

N i The neighbor set of investor i in the graph G
H(t) (h (t)) The maximum (minimum) of investors’ positions at time t

E(μ, σ, g) The elliptical distribution with mean μ and a strictly decreasing density generator g

T (a 0 , p 0 ; a 1 , p 1 ) The two-point distribution taking two values a 0 , a 1 with respective positive 

probabilities p 0 , p 1 , where a 0 < 0 < a 1 and p 0 + p 1 = 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ray (2017) , it is the coefficient of aspiration, not the degree of inequality of the initial wealth distribution, which determines

the asymptotic behavior of wealth growth and inequality in our model. 

The remainder of this paper is organized as follows. In Section 2 we present the single-period behavioral portfolio choice, 

determine the OIS and study under what conditions it is optimal to long the risky asset. We then extend the model to a

multi-period setting of a social network of multiple investors and discuss plausible models for the reference point for this 

setting in Section 3 . Our main results are in Section 4 , where we study the impact of social interactions on wealth growth

and inequality. Finally, we conclude this paper in Section 5 . For a clear presentation of the main story line and the key

results, we place all the proofs in the appendix of this paper. To help readers to follow our presentation with ease, we

summarize the model parameters and notations in Table 1 . 

2. Single-period behavioral portfolio choice 

We start our analysis with a single-investor behavioral portfolio choice model for a single investor. This problem was 

studied in greater generality in He and Zhou (2011a) , who also consider probability weighting and are able to obtain explicit

solutions for two special cases, namely when the reference point coincides with the risk-free return or when the value 

function is piecewise linear. Disregarding probability weighting on the other hand allows us to get more explicit results 

when taking diminishing sensitivity into account and allowing for a general position of the reference point. The latter point 

is particularly important for the aim of this paper as we later want to study the effect of social reference point formation

on wealth growth and inequality. This section also contributes to the literature by showing conditions under which it is 

optimal for a loss averse investor with S-shaped utility function to long, respectively to short a risky asset. 

The financial market under consideration consists of one risk-free account and one risky asset (stock) with stochastic 

return 

˜ R . We assume that the risk-free asset does not generate interest for simplicity. Let W 0 be the initial wealth of an

individual investor at the beginning of an investment period, and let θ denote the amount that she invests in the stock.

The remaining wealth W 0 − θ is invested in the risk-free account such that the strategy is self-financing. The investor’s 

total wealth at the end of this period is then given by W 0 + ( ̃  R − 1) θ . We do not prohibit short selling. The excess return

R := 

˜ R − 1 is a random variable with cumulative distribution function (CDF) F (·) . To exclude arbitrage opportunities we

assume that 0 < P (R < 0) < 1 and 0 < P (R > 0) < 1 . 

The preferences of the investor are incorporating key ingredients of prospect theory: reference dependence, loss aversion, 

and an S-shaped utility function implying locally risk seeking behavior in the loss region and locally risk averse behavior in

the gain region. 6 More specifically, if the reference point separating gains and losses is given by B, then the expected value
6 When probability distortion is not considered, prospect theory reduces to expected utility maximization with an S-shaped utility function. The for- 

mulation of prospect theory of Kahneman and Tversky (1979) incorporates distortion of probabilities. We here do not consider probability weighting for 
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of a random variable X with CDF F X is defined as 

V (X ) = 

∫ + ∞ 

B 

(x − B ) αdF X (x ) − k 

∫ B 

−∞ 

(B − x ) αdF X (x ) , (1) 

where k > 1 is the coefficient of loss aversion and 0 < α < 1 is the parameter of risk attitude 7 . 

Let B̄ = W 0 − B denote the relative wealth of the investor. The expected utility evaluation of a given strategy θ, denoted

as well by V (θ ) by a slight abuse of notation, can then be expressed as 

V (θ ) = 

∫ + ∞ 

− B̄ 
θ

(θs + B̄ ) αdF (s ) − k 

∫ − B̄ 
θ

−∞ 

(−θs − B̄ ) αdF (s ) 

when θ > 0 , as 

V (θ ) = 

∫ − B̄ 
θ

−∞ 

(θs + B̄ ) αdF (s ) − k 

∫ + ∞ 

− B̄ 
θ

(−θs − B̄ ) αdF (s ) 

when θ < 0 , and as 

V (0) = 

{
B̄ 

α, B̄ ≥ 0 ; 

−k | ̄B | α, B̄ < 0 . 

The objective of the investor is to find the optimal investment strategy (OIS) θ ∗ such that 

V (θ ∗) = max 
θ∈ R 

V (θ ) . (2) 

Since the behavioral evaluation function is not convex it might occur that there are multiple optimal investment strategies. 

In this case, we assume that the investor will choose the largest solution. 8 This assumption also applies to the infinitely

repeated model we develop later. 

Throughout this paper we make the following two assumptions. 

Assumption 1. The CDF, F (·) , of the excess return R is either a two-point distribution or absolutely continuous with the

property that there exists an ε > 0 such that the probability density function (PDF) f (s ) = O (| s | −2 −ε ) for sufficiently large

| s | . 
Assumption 2. The following well-posedness condition holds, 

k > max 

{ ∫ + ∞ 

0 s αdF (s ) ∫ 0 
−∞ 

| s | αdF (s ) 
, 

∫ 0 
−∞ 

| s | αdF (s ) ∫ + ∞ 

0 s αdF (s ) 

}
, (3) 

where α is the parameter of risk attitude. 

Assumption 1 is not essential for the analysis presented herein, and our results would in particular also hold in case

of discrete distributions other than the two-point distribution. We restrict distributions to the two-point case mainly to 

explicitly illustrate and discuss the case where the investor takes a short position in a stock with a positive expected re-

turn in Appendix A. Assumption 2 on the other hand is essential and guarantees that the behavioral portfolio optimization

model under consideration is well-posed and both the OIS θ ∗ and the optimal evaluation value V (θ ∗) are finite, cf. He and

Zhou (2011a) . We refer to He and Zhou (2011a) for a discussion of Assumption 2 . 

It is clear that when the relative wealth B̄ = W 0 − B = 0 , arg max θ∈ R V (θ ) = 0 . The following theorem shows that the OIS

is piecewise linear as a function of the relative wealth and provides conditions on whether it is optimal to long or short the

stock. 

Theorem 1. Consider the behavioral portfolio choice problem (2) with B̄ � = 0 . Then there exists γ ∗ which depends only on α, k,

F , and the sign of B̄ (but not the absolute value of B̄ ) such that the OIS θ ∗ takes the form of 

θ ∗ = arg max 
θ∈ R 

V (θ ) = γ ∗B̄ . 

We emphasize that the piecewise linearity coefficient γ ∗ depends only on the parameter of risk attitude α, the coefficient 

of loss aversion k, and the market opportunity and in particular not on the relative wealth B̄ . The piecewise linear structure

turns out to be very convenient, because it suffices to solve (2) only twice for the cases of B̄ = 1 and B̄ = −1 , respectively.
simplicity. The main result of this section, namely the piecewise linear structure of the optimal policy, would still hold under probability weighting. How- 

ever, it would be harder to identify whether the investor takes a long or short position in the stock. 
7 We remark that positive homogeneity of utility functions is sufficient for the optimal investment strategy of the single-period optimization problem 

(2) to be (piecewise) linear. The main theoretical results in Sections 4.1 and 4.2 therefore hold for any positive homogeneous utility function, and not just 

for power utility functions, provided that the market is good enough so that the investor always optimally longs the stock (i.e., Proposition 1 holds). 
8 Our results would also hold when taking another solution as long as the investor selects her strategy according to a predefined rule. 
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Denoting the resulting optimal coefficients by γ+ and −γ− respectively (i.e., γ ∗ = γ+ in the case of B̄ = 1 and γ ∗ = γ− in the

case of B̄ = −1 ), the OIS must be γ+ ̄B for any positive relative wealth B̄ and γ−B̄ for any negative relative wealth B̄ . Similar

results of piecewise linear structure can be found for example in Shi et al. (2015a) , Shi et al. (2015b) , or Strub and Li (2020) .

For the upcoming analysis of the infinitely repeated behavioral portfolio choice model, we suppose that the coordination 

between the investor’s preferences and the market is such that the stock offers a positive expected excess return and the

investor takes a long position in the stock. We make the following assumption in the rest of the paper and refer to Appendix

A for further insight on the investment direction and results on the wealth dynamics in a social network where Assumption

3 is violated. 

Assumption 3. The expected excess return of the stock is positive and either of the following two conditions hold 

(i) the CDF F (·) of the excess return is absolutely continuous and F (s ) + F (−s ) is strictly increasing on s > 0 ; 9 

ii) the CDF F (·) of the excess return is a two-point distribution T (a 0 , p 0 ; a 1 , p 1 ) and a α
1 

p 1 > | a 0 | α p 0 . 

Proposition 1. The investor never takes a short position in the stock. 

3. Dynamic behavioral portfolio choice and reference point formation for a social network 

We now extend the setting of the previous section to a multi-period framework for a social network. The social network 

consists of multiple investors described by a node set V = { 1 , ..., n } ( n ≥ 2 ). Each investor holds a deterministic positive

initial wealth x i (0) and invests in a financial market consisting of one risky asset and one risk-free asset. The key feature of

our model is that investors not only consider their own current and past wealth levels but also observe the wealth levels

of the investors in the network when forming their reference points. The links among investors can be characterized by a

graph G = (V, E ) , where E ⊆ V × V is the arc set. The graph is undirected and connected, i.e., (i, j) ∈ E if and only if ( j, i ) ∈ E
and there is a path between any pair of nodes in the graph. Let N i = { j| ( j, i ) ∈ E} denote the neighborhood set of investor i .

Since each investor knows her own wealth level it is natural to assume that (i, i ) ∈ E, i.e., i ∈ N i for all i . 

We consider an infinite investment horizon and investment periods: [0,1), [1,2),..., [ t, t + 1) , .... The stochastic return and

excess return of the t-th time period [ t, t + 1) are denoted by ˜ R (t) and R (t) := 

˜ R (t) − 1 , respectively. The excess returns are

assumed to be i.i.d. over time with CDF F (·) . All investors are myopic, i.e., at each time t they only consider the optimal

portfolio choice problem for the time span [ t, t + 1) . We propose that investors’ reference points are dynamic, adaptive

over time and composed of two components: A personal component determined by each investor’s individual history of 

wealth and a social component determined by comparison with the wealth levels of the other investors in the network. 

To be specific, at the beginning of each time period [ t, t + 1) , every investor i updates her reference point as a convex

combination of her personal reference point B 
p 
i 
(t) and the reference point determined by social comparison B s 

i 
(t) , 

B i (t) = (1 − β) B 

p 
i 
(t) + βB 

s 
i (t) , (4) 

where 0 ≤ β ≤ 1 represents the weight given to the social component of the reference point. We term β the degree of social

interactions . She then solves the behavioral portfolio optimization problem (2) with respect to the reference point B i (t) and

initial wealth W 0 = x i (t) , to determine her OIS θ ∗
i 
(t) . At the end of this investment period, investor i receives returns from

her investment and now owns x i (t + 1) = x i (t) + θ ∗
i 
(t )( ̃  R (t ) − 1) . This process repeats over all subsequent time periods. In

the following we explicate in detail how the personal and social components of the reference point are formed respectively. 

There are two competing rules for personal reference point updating based on past decisions and outcomes in a dynamic 

setting: The non-recursive updating rule of Baucells et al. (2011) and the recursive updating rule of Arkes et al. (2008, 2010) .

Both of those rules have been employed to study decision making in a financial context, the non-recursive rule in Strub and

Li (2020) and the recursive rule in Shi et al. (2015b) and He and Yang (2019) . Under the non-recursive updating rule, the

personal reference point is determined by 

B 

p 
i 
(t) = ρx i (t) + 

t ∑ 

r=0 

(
w 

(
r + 1 

t + 1 

)
− w 

(
r 

t + 1 

))
x i (r) , t ≥ 0 . (5) 

The first term represents a built-in profit while the second term is a weighted sum of the investor’s own past wealth levels.

The weighting function w with w (0) = 0 and w (1) = 1 is typically inverse S-shaped, which leads to considerable weight

being given to the current and the initial wealth levels and lower weights to the intermediate wealth levels. 

On the other hand, under the recursive updating rule the personal reference point is formed as a function of the current

wealth and previous reference point by 

B 

p 
i 
(t) = 

{
B 

p 
i 
(t − 1) + αg 

(
x i (t) − B 

p 
i 
(t − 1) 

)
, if x i (t) ≥ B 

p 
i 
(t − 1) , 

B 

p 
i 
(t − 1) + αl 

(
x i (t) − B 

p 
i 
(t − 1) 

)
, if x i (t) < B 

p 
i 
(t − 1) , 

(6) 
9 We can show that when the excess return follows an elliptical distribution with a positive (negative) mean, F (s ) + F (−s ) is strictly increasing (decreas- 

ing) on s > 0 . 
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where αg , αl ∈ [0 , 1] are updating coefficients for prior gains and losses respectively. Note that αg < 1 and αl < 1 mean

that the adaptation is partial. Arkes et al. (2008) have found that typically αg > αl , which implies that the reference point

adapts faster to gains than to losses. This updating rule also requires to determine an initial reference point which we set

to B 
p 
i 
(0) = (1 + ρ) x i (0) such that the initial reference points under the recursive and non-recursive updating rules coincide.

A detailed comparison between the two updating rules can be found in Strub and Li (2020) . While they find that the

non-recursive updating rule leads to more realistic trading behavior, and the regression analysis in Baucells et al. (2011) also

provides evidence showing that reference points are generally not recursive, we will consider both updating rules for the 

theoretical part of the paper and even focus on the recursive updating rule for the numerical analysis. The reason is that

the evidence supporting the non-recursive updating rule is coming from shorter time horizons, up to 10 price sequences for 

a stock in Baucells et al. (2011) and a time horizon of one year in Strub and Li (2020) to be specific. For the current paper

on the other hand we are interested in the long term wealth dynamics of the network. It is very plausible that, when an

investor buys a stock and sells it a year later, then the purchasing price of the stock plays an important role in determining

the reference point. However, it is not obvious at all that the wealth an investor owned at the age of twenty is an important

component of the investor’s reference point at the age of sixty. 

For the social component B s 
i 

of the reference point in (4) we propose the following two properties: 

• Upward-Looking: x i (t) ≤ B s 
i 
(t) for any t ≥ 0 ; 

• Moderation: There exists 0 < ι < 1 such that for any t ≥ 0 

ι
(

max 
j∈N i 

x j (t) − x i (t ) 
)

≤ B 

s 
i (t ) − x i (t) ≤ max 

j∈N i 
x j (t) − x i (t) . 

The “Upward-Looking” property states that each investor’s reference point is never strictly lower than her own wealth. 

This property is in line with the argument in Collins (1996) that “... people often compare themselves with those whose abil-

ities and attributes are better than their own” and the observation in Duesenberry (1949) and Ferrer-i-Carbonell (2005) that 

people generally look to those who are richer than themselves when they form their aspirations. Upward-looking aspira- 

tion/reference point formations have been studied for example in the supplement of Genicot and Ray (2017) . Taking the

personal component as a benchmark, the “Upward-Looking” property of the social component will shift the reference point 

upward. The effect this property is having on the risk taking of an individual investor thus depends on where the current

wealth stands with regards to the personal component of the reference point. If the current wealth lies above the personal

component, social interactions will reduce the amount invested in the stock since the applying reference point will move 

closer to the current wealth and the optimal strategy is piecewise linear in the difference between the two. On the other

hand, if the current wealth lies below the personal component of the reference point, social interactions will increase the 

amount invested in the stock since they further increase the perception of being in a loss position of an individual investor.

The “Moderation” property asserts that the incentive, defined as the difference between the investor’s reference point and 

her own wealth, is neither too small nor too large compared to the wealth gap to the richest person within her network.

This property is consistent with the argument that “... goals that lie ahead–but not too far ahead–provide the best incentives”

suggested by Genicot and Ray (2017) (Page 490). These two properties are maintained throughout this paper. 

Remark 1. Genicot and Ray (2017) propose a general aspiration formation function which is formed by the whole pop- 

ulation’s wealth level and derive the implications of some reasonable properties of the formation function (regularity, 

scale-invariance, range-boundedness and social monotonicity) on economic growth. In fact, the “Upward-Looking” prop- 

erty and the upper bound assumption of the “Moderation” property coincide with the “Range-Boundedness” assumption of 

Genicot and Ray (2017) when one would limit the investor’s “vision” or “aspiration window” to those neighbors who are 

not poorer than herself. 

4. Wealth growth and inequality 

This section contains the main results of our paper where we present the implications of social interactions on wealth 

growth and inequality in our model. We study two extreme cases: First, we consider the case where there are no social

interactions and the reference point is determined by each investor’s own history of wealth which serves as a benchmark. 

Second, we study the case where the reference point is formed by social comparison alone independent of the investor’s 

own history of wealth. Finally, we will consider the general case where the reference point is determined by both the

personal and social components. Let us start with some definitions. 

We denote by 

H(t) = max 
1 ≤i ≤n 

x i (t ) , h (t ) = min 

1 ≤i ≤n 
x i (t) 

the maximum and minimum wealth levels in the network at the beginning of the t-th time period. The wealth gap of the

network at the beginning of the t-th time period is then given by H(t) − h (t) . To avoid the trivial case, we assume that the

wealth gap exists in the initial wealth distribution, i.e., H(0) > h (0) . 

We refer to E [ x i (t)] as investor i ’s expected wealth at time t . One goal of this paper is to investigate the effect of the

wealth gap and reference point on the wealth growth, i.e., how they influence the expected wealth dynamics { E [ x i (t)] } t≥0 

over time. For the sake of concise terminology, we will use wealth growth to refer to growth of the expected wealth. 
7 
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In addition to the wealth gap as a measure of absolute inequality introduced above, we are also interested in the gener-

alized Gini coefficient as a measure of relative inequality. Let (y 1 , ..., y n ) denote (x 1 , ..., x n ) in ascending order and τ be the

unique index satisfying that 
∑ τ

i =1 y i ≤ 0 and 

∑ τ+1 
i =1 y i > 0 if y 1 < 0 , τ = 0 otherwise. Then the generalized Gini coefficient (at

time t) is defined as 

GGC(t) � 

{
NGC(x 1 (t) , ..., x n (t)) , if 

∑ n 
i =1 x i (t) > 0 ; 

NGC(−x 1 (t) , ..., −x n (t)) , if 
∑ n 

i =1 x i (t) < 0 , 

where 

NGC(x 1 , ..., x n ) � 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∑ n 
i =1 

∑ n 
j=1 | y i −y j | 

2 n 
∑ n 

i =1 y i 
, if τ = 0 ; ∑ n 

i =1 

∑ n 
j=1 | y i −y j | 

2 n 
∑ n 

i =1 y i 

1 

1+ 2 n 

∑ τ
j=1 

jy j ∑ n 
i =1 

y i 
+ 1 n 

∑ τ
j=1 

y j ∑ n 
i =1 

y i 

[ ∑ τ
j=1 

y j 

y τ+1 
−(1+2 τ ) 

] , otherwise, 

is the normalized Gini coefficient proposed in Berrebi and Silber (1985) for wealth distributions where some wealth lev- 

els are allowed to be negative, but with positive total wealth (i.e., 
∑ n 

i =1 x i > 0 ). The normalized Gini coefficient was first

proposed in Chen et al. (1982) for a limited case of wealth distribution where there exists a t such that 
∑ t 

j=1 y j = 0 . The

adjustment factor is introduced in order to ensure that the value of the Gini coefficient is not greater than one. 

The generalized Gini coefficient introduced above allows for more general wealth distributions where the total wealth is 

allowed to be negative. This is necessary for a model without restrictions on the investment strategies. 

It is evident that the generalized Gini coefficient is proportional to the ratio of the total wealth gap within the network

over the total wealth, with an adjustment factor due to the possibility of negative wealth levels. To a certain degree, the

numerator in the generalized Gini coefficient plays a similar role as the wealth gap we have defined earlier. The generalized

Gini coefficient thus combines the two measures of wealth gap and total wealth in a single number. It lies between zero

and one, where one represents complete inequality and zero perfect equality. 

4.1. The case without social interactions 

We first consider the case where there are no social interactions, which serves as a benchmark. The reference point of

investor i is updated recursively, either by means of the non-recursive updating rule in (5) or the recursive updating rule in

(6) . 

Proposition 2. Suppose that each investor employs the same updating rule for the personal component of the reference point 

whose evolution is specified either in (5) or (6) and there are no social interactions, i.e., β = 0 . Then the optimal terminal wealth

of investor i is given by 

x i (t) = S(t) x i (0) , i = 1 , . . . , n, 

where S(t) is an F t -measurable random variable which does not depend on the specific investor, with F t being the σ -algebra

generated by the risky returns R (s ) , s ≤ t − 1 . 

Remark 2. We can easily see that Proposition 2 still holds when there is an additional constraint that the amount invested

by each investor at each time period is not greater than her current wealth level, and the return of the risky asset is

nonnegative. 

From Proposition 2 we immediately obtain the following corollary on the wealth gap, wealth growth and generalized 

Gini coefficient. 

Corollary 1. Suppose that there are no social interactions, i.e., β = 0 , and each investor employs the same updating rule for her

personal component of the reference point as in Proposition 2 . Then 

(i) The expected wealth gap of the network evolves as E [ H(t) − h (t) ] = ( H(0) − h (0) ) E [ S(t)] ; 

ii) The expected wealth growth of each investor is given by E [ x i (t) ] = x i (0) E [ S(t) ] > E [ x i (t − 1) ] ; 

ii) The generalized Gini coefficient of the network remains constant, GGC(t) = GGC(0) . 

In plain language, Corollary 1 tells us that if there are no social interactions, then each investor’s wealth, and conse-

quently the wealth gap within the network, grows at a linear rate. In particular, relative inequality as measured by the

generalized Gini coefficient remains constant over time. 

4.2. The case without a personal component 

In the case where each investor’s reference point is determined by social interactions alone, investor i ’s reference point 

at time t is equal to B s 
i 
(t) . We refer to the difference between investors’ reference points and their current wealth levels

as the incentives to invest. High reference points generally induce large incentives for investors to invest in the risky asset.
8 



Y. Lou, M.S. Strub, D. Li et al. Journal of Economic Dynamics & Control 127 (2021) 104120 

 

 

 

(

(

(

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that for any i and t , B s 
i 
(t ) ≥ x i (t) by the “Upward-Looking” property. So by Theorem 1 , investor i ’s wealth ( i = 1 , ..., n )

evolves in the following way: 

x i (t + 1) = x i (t) + R (t ) γ−[ x i (t ) − B 

s 
i (t)] 

= x i (t) + R (t ) | γ−| [ B 

s 
i (t ) − x i (t)] . (7) 

The following proposition establishes a relationship between the expected cumulative wealth of the network and the 

expected wealth gap. 

Proposition 3. Suppose that there are only social interactions in the reference point updating, i.e., β = 1 . Then each investor’s

expected wealth will increase over time. Furthermore, it is necessary and sufficient for a sustained wealth growth without upper 

bound, i.e., for E [ 
∑ n 

i =1 x i (t)] to converge to positive infinity as t goes to infinity, that the series of the sum of the expected wealth

gaps is divergent. Specifically, we have that for all t, 

ιμ| γ−| 
t ∑ 

r=0 

E [ H(r) − h (r)] ≤ E 

[ n ∑ 

i =1 

x i (t + 1) 
] 

−
n ∑ 

i =1 

x i (0) ≤ nμ| γ−| 
t ∑ 

r=0 

E [ H(r) − h (r)] , 

where ι is defined in the definition of “Moderation” and n is the network size. Consequently, the following are equivalent: 

a) lim t→∞ 

E [ H(t)] < + ∞ ; 

b) lim t→∞ 

E [ x i (t)] < + ∞ , i = 1 , ..., n ; 

c) 
∑ ∞ 

t=0 E [ H(t) − h (t)] < + ∞ . 

Furthermore, if lim t→∞ 

E [ H(t)] =: H 

∗ < + ∞ , then lim t→∞ 

E [ x i (t)] = H 

∗ for all i . 

The above proposition states that, if the incentive to invest is small in the sense that the series of the sum of the expected

wealth gaps is bounded, investors’ expected wealth will grow to a common finite level. On the other hand, if the incentive is

large enough for the series of the sum of the expected wealth gaps to diverge, investors’ expected wealth will grow without

upper bound. This implies that a large wealth gap is beneficial for wealth growth. 

In the above proposition, we investigated the impact of absolute wealth inequality on wealth growth. Absolute wealth 

inequality affects investors’ incentives to invest and the investment outcomes in turn determine wealth growth and affect 

investors’ reference point formation. Wealth inequality, wealth growth and the reference points evolve jointly and in mutual 

dependence. We proceed in the following to explore the evolution of wealth inequality and wealth growth for complete 

graphs under a specific choice for the reference point formation rule. We impose the following assumption for the rest of

this paper. The network graph G is said to be complete if N i = { 1 , ..., n } for any i, or in other words, every investor compares

her own wealth to the wealth of every other investor in the network. 

Assumption 4. The network graph is complete and the reference point of investor i at time period t is given by 

B 

s 
i (t) = λH(t) + (1 − λ) x i (t) (8) 

for some λ ∈ [0 , 1] . 

The parameter λ in (8) is referred to as the coefficient of aspiration of the investors and represents the strength of in-

vestors’ concern for their relative status/position compared with the richest member of the network. The closer the param- 

eter λ is to one, the more the investor strives to stand at the top. This specific rule satisfies the properties of “Upward-

Looking” and “Moderation” as well as all the properties specified for the aspiration formation function in Genicot and 

Ray (2017) . The updating rule captures the empirical evidence that an individual’s aspiration level increases with her past 

income and depends positively on the incomes of others in her reference group. Put differently, her utility is negatively af-

fected by the incomes of others in her reference group (see Clark et al. 2008; Ferrer-i-Carbonell 2005; Luttmer 2005; Senik

2009; Stutzer 2004 ). 

By (7) and the specific reference point formation rule (8) , the investor i ’s wealth ( i = 1 , ..., n ) evolves in the following

way: 

x i (t + 1) = x i (t) + φλ(t )(H(t ) − x i (t)) , (9) 

where φλ(t) := R (t) | γ−| λ. 

We will investigate the impact of the coefficient of aspiration λ on the wealth gap, wealth growth and wealth inequal-

ity measured by generalized Gini coefficient under the specific reference point formation rule (8) in the following three 

subsections. 

Remark 3. While we believe that the wealth of the richest member of the social network is the most salient and Assump-

tion 4 is thus intuitively plausible, it does lead to the arguably unrealistic prediction that poorer investors invest more in

the stock than richer ones if there is no personal component and the reference point is determined by social interactions

alone. Empirical evidence on the other hand shows that poorer investors typically invest less in stocks than richer ones, see,

e.g., Fagereng et al. (2020) . This suggests that the reference point should contain both a personal and social component, or

that other models for the formation of social reference points might also be plausible. In order to replicate empirical wealth
9 
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(t) | = 1 . 
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λth < λ ≤ 1 , the expected wealth gap diverges and each investor’s expected wealth grows indefinitely with a common growth rate. 

 

 

 

 

 

 

 

 

 

dynamics, one would likely have to integrate other factors driving investment decisions into our model. This goes beyond 

the scope of this paper, which aims to study the impact of a reference point determined by social comparison on wealth

growth and inequality in isolation of other factors driving wealth dynamics. 

4.2.1. Wealth gap 

The main reason why we start the investigation with the wealth gap H(t) − h (t) , instead of the equivalent∑ n 
i =1 

∑ n 
j=1 | x i (t) − x j (t) | , 10 is that the analysis of the dynamics ( H(t) ) 

∞ 

t=0 and ( h (t) ) 
∞ 

t=0 can help us to analyze the wealth

growth rate. 

The following lemma shows that the wealth gap dynamics can be described by a linear iterative equation, where the 

piecewise linearity coefficient depends only on the market condition and the coefficient of aspiration, but not on investors’ 

current wealth levels. 11 

Lemma 1. Suppose that there are only social interactions in the reference point updating, i.e., β = 1 . Then it holds that H(t +
1) − h (t + 1) = | 1 − φλ(t ) | (H(t ) − h (t)) for any t ≥ 0 . 

According to the above lemma and the time-dependence of the excess returns, we have 

E [ H(t + 1) − h (t + 1)] = E [ | 1 − φλ(t ) | ] E [ H(t ) − h (t)] . 

It becomes evident that the expected wealth gap will asymptotically disappear if E [ | 1 − φλ(t) | ] < 1 , and widen when E [ | 1 −
φλ(t) | ] > 1 . We next present this threshold result. 

Proposition 4. Suppose that there are only social interactions in the reference point updating, i.e., β = 1 . Then there exists a

threshold 0 < λth ≤ 1 , such that if λ < λth , the expected wealth gap will disappear, and if λ > λth , the expected wealth gap will

widen. 

Proposition 4 shows that a moderate coefficient aspiration incentives the poorer members of the network to catch up 

with the richest and reduces inequality, while an excessive coefficient of aspiration leads to divergence. The intuition behind 

this result is as follows. Under a moderate coefficient of aspiration, the poorer members of the network typically have a

reference point slightly, but not disproportionately, above their current wealth and thus take positions in the stock which 

lead them to approach, but not exceed, the wealth of the richest members of the network under a typical sample path. If

the aspirations of the investors become too large on the other hand, then the poorer members are so ambitious that they

take excessive positions in the stock, often by taking leverage, such that their resulting wealth considerably exceeds those of 

the richest members after a favorable outcome of the stock market, or drops even further below after an adverse outcome. 

The next proposition provides a semi closed-form expression for the computation of the threshold. 
10 In terms of the relation H(t) − h (t) ≤ ∑ n 
i =1 

∑ n 
j=1 | x i (t) − x j (t) | ≤ n (n − 1)(H(t) − h (t)) , the equivalence is in the sense that the two measures will either 

converge to a finite number or diverge to infinity with the same rate. 
11 We can show that the maximum and minimum wealth levels can be specified by means of two linear iterative equations with non-state-dependent 

linearity coefficients for complete graphs, cf. the proof of Proposition 6 . This considerably facilitates the analysis of wealth growth. However, this description 

would fail for general network graphs. The analysis of the wealth gap and wealth growth is rather challenging for general network graphs and will be 

studied in our future work. 

10 
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Proposition 5. Suppose that there are only social interactions in the reference point updating, i.e., β = 1 . Then the following

hold. 

(i) The threshold λth is given by λth = min 

{ 

1 
| γ−| s ∗ , 1 

} 

, where s ∗ is the unique root of the following equation 

∫ + ∞ 

s 

rdF (r) + s (F (s ) − 1) = 

μ

2 

on (0 , + ∞ ) . (10) 

In particular, 

(a) Suppose R (t) follows an elliptical distribution E(μ, σ, g) with μ > 0 . Then 

λth = min 

{ 

1 

(μ/σ + s̄ ) | γ−| σ , 1 

} 

, 

where s̄ is the unique root of the following equation ∫ + ∞ 

s 

r f �(r ) dr + s (F �(s ) − 1) = 

μ

2 σ
on 

(
− μ

σ
, + ∞ 

)
, (11) 

F � and f � are the CDF and PDF of the standard elliptical distribution, respectively. 

(b) Suppose R (t) follows a two-point distribution T (a 0 , p 0 ; a 1 , p 1 ) with a α
1 

p 1 > | a 0 | α p 0 . Then 

λth = min 

{ 

2 p 1 
| γ−| (a 1 p 1 + | a 0 | p 0 ) , 1 

} 

. 

ii) The threshold λth = 1 if E [ | 1 − φ1 (t) | ] ≤ 1 and λth < 1 if E [ | 1 − φ1 (t) | ] > 1 . Consequently, the threshold λth = 1 if and only

if 

μ ≥ 2 

[ ∫ + ∞ 

| γ−| −1 

sdF (s ) + | γ−| −1 (F (| γ−| −1 ) − 1) 
] 
, 

and λth < 1 for sufficiently small μ if lim 0 <μ→ 0 γ−(μ) < 0 . For symmetric two-point distribution T (−a 1 , p 0 ; a 1 , p 1 ) with

p 1 > p 0 , λth = 1 if and only if k ≥ p 1 
p 0 

(
2 p 1 +1 
2 p 1 −1 

)
1 −α . 

The above result reveals that for elliptical distributions, the threshold λth depends on μ and σ only through the 

Sharpe (1994) ratio μ/σ . For the following five specific distributions, we can get more explicit formulas for the thresh- 

old by, for the first four distributions, calculating the integrals in (10) and (11) , and, for the last distribution, substituting the

expression for γ− in (B.1) into the threshold. 

• Normal distribution. ̄s is the unique root of the equation s (F NOR 
�

(s ) − 1) + 

1 √ 

2 π
e −

s 2 

2 = 

μ
2 σ on (−μ

σ , + ∞ ) , where the su-

perscript “NOR” stands for the normal distribution. 

• Student’s t distribution with ν ≥ 2 . ̄s is the unique root of the equation s (F ST 
�

(s ) − 1) + 

ν
ν−1 

�( 1+ ν
2 

) √ 

νπ�( ν
2 
) 
(1 + 

s 2 

ν ) 
1 −ν

2 = 

μ
2 σ on

(−μ
σ , + ∞ ) , where �(·) is the gamma function. 

• Logistic distribution. ̄s is the unique root of the equation s (F LOG 
�

(s ) − 1) + 

s 
1+ e s − s + ln (1 + e s ) = 

μ
2 σ on (−μ

σ , + ∞ ) , where

the superscript “LOG” stands for the logistic distribution. 

• Lognormal distribution. s ∗ is the unique root of the equation e ρ+ σ2 

2 

[
F NOR 
�

(
ln s −ρ−σ 2 

σ

)
− 1 

2 

]
+ s 

[
1 − F NOR 

�

(
ln s −ρ

σ

)]
= 

1 
2 on 

(0 , + ∞ ) . 

• Symmetric two-point distribution. Suppose that R (t) ∼ T (−a 1 , p 0 ; a 1 , p 1 ) with p 1 > p 0 . In this case, λth (p 1 ) =

min 

{
2 p 1 

(
kp 0 
p 1 

) 1 
1 −α −1 (

kp 0 
p 1 

) 1 
1 −α +1 

, 1 

}
and consequently, lim 1 

2 
<p 1 → 

1 
2 
λth (p 1 ) = 

k 
1 

1 −α −1 

k 
1 

1 −α +1 

. 

4.2.2. Wealth growth 

We next show how wealth growth depends on the coefficient of aspiration. Recall that we defined E [ x i (t)] as investor i ’s

expected wealth at time t . 

Proposition 6. Suppose that there are only social interactions in the reference point updating, i.e., β = 1 . Then if λ < λth , every

investor’s expected wealth grows to a common finite level with the exponential rate E [ | 1 − φλ(t) | ] < 1 , and if λ > λth , every

investor’s expected wealth increases without bound with the exponential rate E [ | 1 − φλ(t) | ] > 1 . 

Proposition 6 shows that the threshold for bounded/unbounded wealth growth is exactly the same as the threshold for a 

diminishing/widening wealth gap established in Proposition 4 . It reveals an interesting choice: One can either have a narrow 

wealth gap but with bounded wealth growth, or a wide wealth gap but with unbounded wealth growth. In other words,

there is a trade-off between sustained growth and a widening wealth gap, that is, we cannot have both economic growth 

as well as an absolutely equal society. 
11 
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The proof of Proposition 6 explicitly specifies the common exponential growth rate of wealth. Specifically, when λth < 

λ < 1 , 

lim 

t→∞ 

(E [ x i (t)]) 
1 
t = E [ | 1 − φλ(t) | ] > 1 , i = 1 , . . . , n. 

From the proof of Proposition 4 we know that the wealth growth rate E [ | 1 − φλ(t) | ] is strictly increasing on (λth , 1] . One

result of the constant elasticity growth model in Genicot and Ray (2017) shows that when the initial wealth distribution has

a high degree of equality, all investors’ wealth will grow at a common rate. We get a similar result of a common growth

rate, however in our model it is the coefficient of aspiration, and not the initial wealth distribution, that determines the

common growth rate. 

4.2.3. Wealth inequality 

Here we consider the impact of the coefficient of aspiration on the dynamics of the generalized Gini coefficient. Let us

consider the following measure of wealth inequality in terms of investors’ wealth level distribution: 

W (t) � 

∑ n 
i =1 

∑ n 
j=1 | x i (t) − x j (t) | 

2 n 

∑ n 
i =1 x i ( t) 

. 

This is the original definition of the Gini coefficient for a nonnegative wealth distribution in Sen (1973) . It follows from

(9) that the following relation between the difference of the wealth levels of two investors at two consecutive times holds: 

| x i (t + 1) − x j (t + 1) | = | 1 − φλ(t ) || x i (t ) − x j (t) | (12) 

for all 1 ≤ i, j ≤ n . Consequently, we have the following dynamics for the inverse of the Gini coefficient: 

1 

W (t + 1) 
= 

2 n 

∑ n 
i =1 x i (t) + 2 nφλ(t ) 

∑ n 
i =1 (H(t ) − x i (t)) 

| 1 − φλ(t) | ∑ n 
i =1 

∑ n 
j=1 | x i (t) − x j (t) | 

= 

1 

| 1 − φλ(t) | 
1 

W (t) 
+ 

2 nφλ(t) 
∑ n 

i =1 (H(t) − x i (t)) 

| 1 − φλ(t) | ∑ n 
i =1 

∑ n 
j=1 | x i (t) − x j (t) | . (13) 

We have the following result. 

Proposition 7. Suppose E 

[ φλ(0) 

| 1 −φλ(0) | 
]

> 0 , 12 and that there are only social interactions in the reference point updating, i.e., β = 1 .

Then the followings hold. 

(i) E [ 1 
W (t) 

] increases in t without bound if E 

[
1 

| 1 −φλ(t) | 
]

> 1 , and { E [ 1 
W (t) 

] } t≥0 is bounded if E 

[
1 

| 1 −φλ(t) | 
]

< 1 . 13 

ii) Suppose λth < 1 . Then there exists λth < λ∗ ≤ 1 such that when 0 < λ < λ∗, E 

[
1 

| 1 −φλ(t) | 
]

> 1 . 

ii) There exists λth < λ∗ ≤ 1 such that when 0 < λ < λ∗, E [ 1 
GGC(t) 

] increases in t without bound. 

Proposition 7 is interesting because it suggests that there is a region for the coefficient of aspiration where it is pos-

sible to achieve wealth growth and relative equality simultaneously even in the absence of a personal component for the 

reference point. We emphasize that, within our model, this is not possible in the absence of social interactions. 

4.3. The case where the reference point contains both social and personal components 

Comparing the theoretical results of the previous two subsections suggests that social interactions can have a positive 

effect on inequality. In this subsection we investigate this further by considering the general case 0 < β < 1 , where the

reference point is composed of both social and personal components. 

Since it is difficult to obtain analytical results we investigate the effect of social interactions numerically by means of 

simulation. We work with the following assumptions and values for the parameters of our model: Suppose that the random 

return 

˜ R (t) follows a lognormal distribution LN(0 . 02 , 0 . 3) . We consider the following parameters specifying the preferences

of the investor α = 0 . 88 and k = 2 . 25 corresponding to the values estimated in Tversky and Kahneman (1992) . We can then

numerically compute the threshold value for the coefficient of aspiration, λth ≈ 0 . 4 4 40 , as well as the piecewise linearity

coefficients for the investment strategy, γ− ≈ −5 . 3838 and γ+ ≈ 2 . 6119 . We here consider the recursive updating rule with

updating coefficients αg = αl = 0 . 6 and suppose that the built-in profit determining the initial reference point is given by

ρ = 0 . 1 . We consider a stylized complete network consisting of five investors, where the initial wealth levels are set as

follows: x i (0) ∈ { 1 , 5 , 10 , 50 , 300 } which corresponds to an initial Gini of approximately GGC(0) ≈ 0 . 7 . This value is typical

for wealth inequality, see, e.g., Davies et al. (2008) . 

Fig. 2 shows the evolution of the expected 

14 generalized Gini coefficient of the network over time for different degrees of

social interactions dictated by the parameter β ∈ { 0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 } and two coefficients of aspirations, namely λ = 0 . 2
12 This is true when the excess return follows an elliptical distribution with a positive mean. 

13 We can see from equation (13) that for the special case of n = 2 , lim t→∞ E [ 1 
W (t) 

] = 

2 E [ 
φλ (0) 

| 1 −φλ (0) | ] 
1 −E [ 1 

| 1 −φλ (0) | ] 
because 

∑ 2 
i =1 

∑ 2 
j=1 | x i (t) − x j (t) | = 2 

∑ 2 
i =1 (H(t) − x i (t)) = 

2(H(t) − h (t)) . 
14 The numerical results presented in this paper would be similar if one considers the median instead of the expected generalized Gini coefficient. 

12 
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Fig. 2. Expected generalized Gini coefficient Notes. The figure shows the evolution of the expected generalized Gini coefficient over time for different 

degrees of social interactions. Subfigure (a) shows the expected Gini for a case where the coefficient of aspiration is below the threshold and Subfigure (b) 

shows the expected Gini for a case where the coefficient of aspiration is above the threshold. The simulation is based on 10 0,0 0 0 scenarios. 

Fig. 3. Expected cumulative wealth of the network Notes. The figure shows the evolution of the expected and median cumulative wealth of all investors in 

the network for different degrees of social interactions. Subfigure (a) shows the expected cumulative wealth for a case where the coefficient of aspiration 

is below the threshold and Subfigure (b) shows the expected cumulative wealth for a case where the coefficient of aspiration is above the threshold. The 

simulation is based on 1,0 0 0,0 0 0 scenarios. 

 

 

 

 

 

 

 

 

 

 

 

below and λ = 0 . 5 above the threshold. We first note that the Gini coefficient is constant over time when there are no social

interactions. This was to be expected from Corollary 1 . We also observe that increasing the degree of social interactions β
typically decreases the expected and median Gini coefficient. This indicates that social interactions can potentially reduce 

inequality. Increasing the coefficient of aspiration also has a positive effect on reducing inequality. In other words, a larger 

weight is given to the wealth level of the richest member of the network when forming the social component of their

reference point, the faster inequality is reduced on average. 

Fig. 3 shows the evolution of the expected cumulative wealth of the network, again for different degrees of social inter-

actions β ∈ { 0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 } and two coefficient of aspirations, namely λ = 0 . 2 below and λ = 0 . 5 above the threshold.

We note that increasing the degree of social interactions has a positive effect of wealth growth. In particular, social inter-

actions can simultaneously achieve higher wealth growth and lower inequality. Intuitively, the social component moves the 

reference point towards the wealth level of the richest member of the network and, compared with the case where there

is no social component, increases the reference point for every member of the social network. For those investors whose 

current wealth lies below the personal component of the reference, this further increases the distance between wealth and 

reference point and thus causes those investors to increase their position in the risky asset. These are typically the poorer

members of the social network and, moreover, the increase due to the social component is larger for the poorer investors

because of the difference between their and the richest investor’s wealth. On the other hand, for those investors whose 

current wealth lies above their personal component of the reference point, the increase in the reference point due to so-

cial interactions decreases the distance between current wealth and reference point and thus leads to lower investments in 

the stock. These tend to be the richer investors of the network. To summarize, a social component in the reference point

incentivizes poorer investors to catch up with the richest in the network and thus invest more in the risky asset and simul-
13 
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taneously causes the richer investors to become more concerned about their wealth falling below the reference point and 

thus to make a more cautious investment. This drives the reduction in inequality. 

Remark 4. We note that wealth quickly converges to a constant level when there are no social interactions and the ref-

erence point is updated recursively. This replicates a finding of Strub and Li (2020) in a different setting. The reason for

this phenomenon is that the current wealth typically converges to the current reference point after a few rounds of trading

when the latter is recursively updated. 

Remark 5. One would obtain qualitatively similar results if the reference point is updated according to the non-recursive 

updating rule of Baucells et al. (2011) with one exception: For some parameter values, a lower degree of social interactions

achieves a higher expected wealth growth at long time horizons than a higher degree of social interactions. The reason for

this is that the initial wealth constitutes an important part of the reference point when the reference point is updated non-

recursively. When t is large, then the current wealth is typically much larger than the initial wealth. Thus, the difference

between reference point and current wealth is typically large which leads to a large investment in the risky asset. On

average, the current wealth and thus also the difference between current wealth and reference point further increases. To 

summarize, the large weight which the non-recursive updating rule gives to the initial wealth level at later times leads to

ever more investment in the risky asset in a self-enforcing manner and consequently to large expected wealth levels. 

In the following we will show that our main findings that increasing social interactions can reduce inequality while 

simultaneously increase wealth growth are robust with regards to several extensions of the model. We will first consider the 

case where there is a no-bankruptcy constraint preventing investors from taking leverage. We will then consider the cases 

where investors are heterogeneous, first in terms of their individual risk attitude and second in terms of their individual 

loss aversion. 

4.3.1. No-bankruptcy constraint 

One potential objection to our result is that investors with a socially determined reference point take a lot of leverage.

This is indeed the case since the optimal investment policy is linear in the difference between current wealth and reference

point and the difference between an investor’s wealth and the richest member within her network can be very large. To

robustify our findings we thus consider a setting where there is a no-bankruptcy constraint, i.e., no investor can invest more

in the risky asset than her own current wealth. Figs. 4 and 5 replicate our previous analysis in this setting with the same

market and preference parameters as before. Although the quantitative results are different and in particular the expected 

wealth growth is much smaller since the investors can not leverage a stock with positive excess return, the qualitative

interpretation remains similar: Social interactions have a positive effect on both wealth growth and inequality. Whereas 

the positive effect on the expected wealth growth is clear from Fig. 5 , the analysis of the effect on social interactions is

more delicate, cf. Figure 4 which displays the effect for varying degrees of social interactions β ∈ { 0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 . 0 }
for Subfigures (a) and (b) and β ∈ { 0 , 0 . 01 , 0 . 02 , 0 . 03 , 0 . 04 , 0 . 05 } for Subfiugres (c) and (d). Looking first at Subfigures (a)

and (b) where the values of β are as in Figure 2 , it appears that the degree of social interactions does not have a significant

effect on inequality in the constraint setting as long as there are social interactions at all. The main reason why the no-

bankruptcy constraint dampens the positive effect of social interactions on inequality is that it mostly limits the poorer 

members of the network while it is often not binding for the richer members. This is especially the case when the wealth

levels of the poorer members are close to zero and the no-bankruptcy constraint is thus truly constraining them from 

catching up with the richer members of the network. Indeed, a thorough analysis of the model under a large variety of

model parameters showed that the effect would be larger if one considers a more equal initial wealth distribution such that

this constraining effect applies to all members of the network, a longer time horizon allowing poorer members to move 

their wealth sufficiently above the constraining bankruptcy bound, or smaller values for the degree of social interactions β . 

The latter case is displayed in Subfigures (c) and (d) showing that, in this range, increasing social interactions typically leads

to a strictly lower expected Gini coefficient. 

4.3.2. Heterogeneous risk attitude 

We consider the situation where investors not only differ in their initial wealth and reference points, but also in their

risk attitude. Specifically, we consider the following values for the parameter of risk attitude: α ∈ { 0 . 75 , 0 . 8 , 0 . 85 , 0 . 9 , 0 . 95 }
around the benchmark value α = 0 . 88 estimated in Tversky and Kahneman (1992) . The corresponding piecewise linearity

coefficients are shown in Table 2 . 

We observe that the absolute value of γ− is decreasing in α whereas γ+ is increasing in α. This conforms with the 

theoretical finding in Lou (2020) for the case of two-point distributions. Consequently, agents with a lower parameter of 

risk attitude invest less in the risky asset when they are in a gain position, but more when they are in a loss position. This

is intuitive given the S-shape of the utility function. 

We consider two scenarios, one where the initially richer investors have a higher parameter of risk attitude, i.e., the 

investor with initial wealth x 1 (0) = 1 has parameter of risk attitude α1 = 0 . 75 , the investor with initial wealth x 2 (0) = 5 has

parameter of risk attitude α2 = 0 . 8 and so on, and another where the order is reversed and the initially poorer investors have

a higher parameter of risk attitude, i.e., the investor with initial wealth x 1 (0) = 1 has parameter of risk attitude α1 = 0 . 95 ,

the investor with initial wealth x (0) = 5 has parameter of risk attitude α = 0 . 9 and so on. We then repeat the simulation
2 2 

14 
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Fig. 4. Expected Gini coefficient with bankruptcy prohibition Notes. Here investors’ wealth levels are nonnegative and so generalized Gini coefficient re- 

duces to the classical Gini coefficient. The figure shows the evolution of the expected and median Gini coefficient over time when wealth is required to 

remain nonnegative for different degrees of social interactions, β ∈ { 0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 . 0 } for Subfigures (a) and (b) and β ∈ { 0 , 0 . 01 , 0 . 02 , 0 . 03 , 0 . 04 , 0 . 05 } 
for Subfiugres (c) and (d). Subfigures (a) and (c) show a case where the coefficient of aspiration is below the threshold, while Subfigures (b) and (d) show 

a case where the coefficient of aspiration is above the threshold. The simulation is based on 10 0,0 0 0 scenarios. 

Table 2 

Piecewise linearity coefficients 

for varying risk attitude. 

α γ− γ+ 

0.75 −7 . 8488 1.9759 

0.8 −6 . 8445 2.1651 

0.85 −5 . 9117 2.4170 

0.9 −5 . 0460 2.7657 

0.95 −4 . 2562 3.2662 

Notes. Piecewise linearity coef- 

ficients when the loss aversion 

is k = 2 . 25 and returns are log- 

normal LN(0 . 02 , 0 . 3) . 

 

 

 

 

of Section 4.3 and show the evolution of the expected Gini coefficient in Fig. 6 and the evolution of the expected cumulative

wealth in Fig. 7 . The scenario where the initially poorer investors are more risk averse is represented in Subfigures (a) and

(b) whereas the scenario where the initially richer investors are more risk averse is represented in Subfigures (c) and (d). In

short, the main findings of our previous analysis still hold when investors have heterogeneous risk attitude: Increasing the 

degree of social interactions tends to a reduction in inequality and higher expected cumulative wealth of the network. This 

shows that it is the position of the reference point, and not individual differences in risk attitudes, that drives these main

long term results. 

We remark that the reduction in expected inequality is not monotone anymore when the coefficient of aspiration is large 

and risk attitudes are heterogeneous. Note that the region for the coefficient of aspiration where both wealth growth and 
15 
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Fig. 5. Expected cumulative wealth of the network with bankruptcy prohibition Notes. The figure shows the evolution of the expected cumulative wealth 

of all investors in the network for different degrees of social interactions when wealth is required to remain nonnegative. Subfigure (a) shows a case where 

the coefficient of aspiration is below the threshold and Subfigure (b) shows a case where the coefficient of aspiration is above the threshold. The simulation 

is based on 1,0 0 0,0 0 0 scenarios. 

Table 3 

Piecewise linearity coefficients 

for varying loss aversion. 

k γ− γ+ 

2.25 −5 . 3838 2.6119 

2.5 −4 . 5202 2.4995 

2.75 −4 . 0318 2.4192 

3 −3 . 7172 2.3565 

3.25 −3 . 4972 2.3059 

Notes. Piecewise linearity co- 

efficients when the parame- 

ter of risk attitude is α = 

0 . 88 and returns are lognormal 

LN(0 . 02 , 0 . 3) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

relative equality are possible we identified in Proposition 7 will change under heterogeneous risk attitudes. A small weight 

given to the personal component thus has a positive moderating effect on expected inequality in this setting. 

Remark 6. From Fig. 6 , it appears that the expected Gini coefficient remains constant when there are no social interactions

even under heterogeneous risk attitudes of the investors. This is not the case, and a careful analysis shows that the expected

Gini coefficient slightly increases when the initially poorer members of the network have a larger parameter of risk attitude 

than the initially richer members and slightly decreases when the poorer members have a smaller parameter of risk attitude 

than the initially richer members. However, the differences are miniscule and hard to identify on the plot. 

4.3.3. Heterogenous loss aversion 

We further consider the situation where investors have heterogeneous loss aversion parameters, i.e., investors not only 

differ in their initial wealth and reference points, but also in their loss aversion. We consider the following values for the

loss aversion parameter k ∈ { 2 . 25 , 2 . 5 , 2 . 75 , 3 , 3 . 25 } increasing from the benchmark value k = 2 . 25 estimated in Tversky and

Kahneman (1992) . We show the corresponding piecewise linearity coefficients in Table 3 . 

We observe that the absolute value of γ− and γ+ are both decreasing in k conforming with the theoretical finding in

Lou (2020) . Consequently, agents with a higher loss aversion take smaller positions in the risky asset as one would expect. 

We consider two scenarios, one where the initially richer investors have a higher loss aversion coefficient, i.e., the in- 

vestor with initial wealth x 1 (0) = 1 has loss aversion coefficient k 1 = 2 . 25 , the investor with initial wealth x 2 (0) = 5 has

loss aversion coefficient k 2 = 2 . 5 and so on, and another where the order is reversed and the initially poorer investors are

more loss averse than initially richer investors, i.e., the investor with initial wealth x 1 (0) = 1 has loss aversion coefficient

k 1 = 3 . 25 , the investor with initial wealth x 2 (0) = 5 has loss aversion coefficient k 2 = 3 and so on. We then repeat the sim-

ulation of Section 4.3 and show the evolution of the expected Gini coefficient in Fig. 8 and the evolution of the expected

cumulative wealth in Fig. 9 . The scenario where the initially richer investors are more loss averse is represented in Subfig-

ures (a) and (b) whereas the scenario where the initially poorer investors are more loss averse is represented in Subfigures

(c) and (d). As in the case of heterogeneous risk attitude, the main findings of our previous analysis are replicated when

investors have heterogeneous loss aversion: Increasing the degree of social interactions leads to a reduction in inequality 
16 
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Fig. 6. Expected generalized Gini coefficient where investors have heterogeneous risk attitude Notes. The setting is the same as that in Fig. 2 except that 

here investors have heterogeneous risk attitude. The parameters of risk attitude of the five investors in Subfigures (a) and (b) are respectively 0.75, 0.8, 

0.85, 0.9 and 0.95 in an increasing order, while those in Subfigures (c) and (d) are respectively 0.95, 0.9, 0.85, 0.8 and 0.75 in a decreasing order. The 

simulation is based on 10 0,0 0 0 scenarios. 

 

 

 

 

 

 

 

 

 

and higher expected cumulative wealth of the network. We can thus again conclude that it is the position of the reference

point, and not individual differences in loss aversion, that drives these main long term results. 

Remark 7. Similar to Remark 6 , the expected Gini coefficient displayed in Fig. 8 when there are no social interactions is

not constant, but slightly increases when the poorer investors are more loss averse than the richer investors and slightly 

decreases when the poorer investors are less loss averse than than the richer investors. 

5. Conclusions 

We investigate the long run behavior of wealth growth and inequality in a dynamic network of multiple behavioral 

investors. Investors’ preferences are myopic, incorporate key ingredients of prospect theory, and are homogeneous with the 

exception of the reference point which is the focus of our study. For the setting of dynamic social networks, we propose a

reference point consisting of two components: A personal component incorporating each investor’s own history of wealth 

and a social component which is determined by comparison with the current wealth levels of other investors in the network.

We term the weight given to the social component the degree of social interactions and investigate its influence on wealth

growth and inequality of the network. 

To this end, we first consider a benchmark case where the degree of social interactions is zero and the reference point

is thus solely determined by each investor’s individual history of wealth. In this case, each investor’s expected wealth grows 

at a common rate, the wealth gap widens and the Gini coefficient remains constant over time. 

Next, we study in detail the case where the reference point is solely determined by social comparison for a specific ref-

erence point formation rule prescribing that the reference point is a convex combination of the individual investor’s wealth 

and the maximum wealth level of all members in her network. This formation rule is parametrized by the coefficient of as-

piration and we establish a threshold for this parameter, below which investors’ expected wealth grows to a common finite 

level, the expected wealth gap vanishes and the generalized Gini coefficient keeps at a relatively low level, and above which
17 
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Fig. 7. Expected cumulative wealth of the network where investors have heterogeneous risk attitude Notes. The setting is the same as that in Fig. 3 except 

that here investors have heterogeneous risk attitude. The parameters of risk attitude of the five investors in Subfigures (a) and (b) are respectively 0.75, 

0.8, 0.85, 0.9 and 0.95 in an increasing order, while those in Subfigures (c) and (d) are respectively 0.95, 0.9, 0.85, 0.8 and 0.75 in a decreasing order. The 

simulation is based on 1,0 0 0,0 0 0 scenarios. 

 

 

 

 

 

 

 

 

 

investors’ expected wealth grows without bound at a common rate and the expected wealth gap widens. This latter case 

indicates that it is possible to have both wealth growth and a reduction of inequality in the presence of social interactions. 

Finally, we consider the general case where the reference point contains both the personal and social components. Our 

numerical analysis highlights the importance and positive impact of social interactions potentially have on wealth growth 

and inequality. Indeed, we find that increasing the degree of social interactions can lead to a Pareto improvement in that it

leads simultaneously to an increase in wealth growth and a decrease in inequality as measured by the Gini coefficient. From

the perspective of a social planer or policy maker, it would thus be desirable to increase connectivity among the population

and transparency about the current distribution of wealth within a society. 

We close with the remark that our conclusions are so far only suggestive. They depend on the assumptions we impose

on the social component of the reference point, in particular that the social component is upward looking and driven by

the wealth of the richest member of the network. Furthermore, the general case where the reference point contains both a

personal and social component was studied numerically since it was difficult to derive theoretical results even under those 

assumptions. It is in particular an interesting direction for future research to further investigate how reference points are 

formed in the context of social interactions, and how those mechanisms affect the wealth dynamics within social networks. 

Appendix A. The actual market and the market perceived by the investor 

In this appendix, we provide some further results about the actual market and perceived market, and the proofs of all

the statements in this paper. 

The following definition specifies what we mean by a good or bad actual market, respectively by the market perceived

by the investor being good or bad. 

Definition 1. (i) We say that the actual market is good if the mean μ of the excess return R is positive, and bad if it is

negative. 
18 
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Fig. 8. Expected generalized Gini coefficient where investors are heterogeneously loss averse Notes. The setting is the same as that in Fig. 2 except that 

here investors are heterogeneously loss averse. The loss aversion coefficients of the five investors in Subfigures (a) and (b) are respectively 2.25, 2.5, 2.75, 

3 and 3.25 in an increasingly loss aversion order, while those in Subfigures (c) and (d) are respectively 3.25, 3, 2.75, 2.5 and 2.25 in a decreasingly loss 

aversion order. The simulation is based on 10 0,0 0 0 scenarios. 

Table 4 

The four cases for the market 

condition with a negative rela- 

tive wealth. 

μ > 0 μ < 0 

γ− < 0 Case 1 Case 3 

γ− > 0 Case 2 Case 4 

Notes. The market perceived 

by the investor matches (mis- 

matches) the actual market in 

the two cases of Case 1 and 

Case 4 (respectively Case 2 and 

Case 3 ). 

 

 

 

 

 

(ii) We say that the market perceived by the investor (which is subjective in accordance to the view of the investor) is

good, if the optimal solution θ ∗ of the behavioral portfolio choice problem (2) is positive, and bad if it is negative. 

Proposition 9 (i) in Appendix B and Footnote 9 tell us that for elliptical distributions, the investor always longs the stock 

when the actual market is good and always shorts the stock when the actual market is bad. In the case of a two-point dis-

tribution T (a 0 , p 0 ; a 1 , p 1 ) , Proposition 9 (ii) shows that this result still holds, but need not be the case when the investor is

in a loss position. It can thus happen that the investor shorts an asset with a positive expected excess return, a phenomenon

which never appears under expected utility theory. 

The “Upward-Looking” property of the reference point formation implies that each investor’s relative wealth is always 

nonpositive and we thus only need to consider the loss region. Table 4 illustrates four possible relations between the actual

market and the market perceived by the investor. 
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Fig. 9. Expected cumulative wealth of the network where investors are heterogeneously loss averse Notes. The setting is the same as that in Fig. 3 except 

that here investors are heterogeneously loss averse. The loss aversion coefficients of the five investors in Subfigures (a) and (b) are respectively 2.25, 2.5, 

2.75, 3 and 3.25 in an increasingly loss aversion order, while those in Subfigures (c) and (d) are respectively 3.25, 3, 2.75, 2.5 and 2.25 in a decreasingly 

loss aversion order. The simulation is based on 1,0 0 0,0 0 0 scenarios. 

 

 

 

 

 

 

 

 

 

 

 

We will say that the market perceived by the investor matches the actual market, if the optimal solution of the opti-

mization problem (2) with a negative relative wealth is positive (i.e., γ− < 0 ) in an actually good market, i.e., Case 1 in

Table 4 occurs, or the optimal solution with a negative relative wealth is negative (i.e., γ− > 0 ) in an actually bad market,

i.e., Case 4 occurs. If Case 2 or Case 3 occurs we say that the market perceived by the investor mismatches the actual market.

Note that because the investors in our model have the same (power) value function, whether the market perceived by the

investor matches the actual market or not does not depend on the individual investor. 

The following proposition shows that it is impossible for the wealth to grow or the wealth inequality to be reduced if

the market perceived by the investor mismatches the actual market for any (connected) social network and reference point 

formation rule satisfying the two properties of “Upward-Looking” and “Moderation”. 

Proposition 8 (Impossibility Theorem) . Suppose that the market perceived by the investor mismatches the actual market (i.e., 

Case 2 and Case 3 in Table 4 ). Then the expected total wealth of the network converges to negative infinity and the expected

wealth gap increases without upper bound. 

Appendix B. Proofs of all statements 

Proof of Theorem 1.. Proposition 1 and Theorem 2 in He and Zhou (2011a) show that under Assumptions 1 and 2, the

expected utility evaluation V (θ ) is finite for any θ ∈ R and the optimization problem under consideration is well-posed, i.e.,

the OIS θ ∗ is finite. The first part about the piecewise linear OIS can be shown by similar arguments as given in Theorem

4.2 of Shi et al. (2015a) . �

Proof of Proposition 1.. We show the following more general proposition which specifies further conditions on whether 

the investor takes a long or short position in the stock and, in the case of a two-point distribution, computes the investment

strategy explicitly. �
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Proposition 9. When B̄ � = 0 , we have the following results on the sign of the investment policy (where the positive and negative

signs correspond to long and short positions, respectively). 15 

(i) Suppose that CDF F (·) is absolutely continuous. Then 

arg max 
θ∈ R 

V (θ ) 

{
> 0 , if F (s ) + F (−s ) is strictly increasing on s > 0 ; 
< 0 , if F ( s ) + F (−s ) is strictly decreasing on s > 0 . 

ii) Suppose that CDF F (·) is a two-point distribution T (a 0 , p 0 ; a 1 , p 1 ) . Then we have the following explicit formula for the optimal

investment policy, 16 

γ ∗ = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 −
a 1 | a 0 | +1 (

a 1 p 1 | a 0 | p 0 

)
1 

1 −α + a 1 | a 0 | | a 0 | , if B̄ > 0 ; 
| a 0 | 
a 1 

+1 (
k 

| a 0 | p 0 
a 1 p 1 

)
1 

1 −α − | a 0 | 
a 1 

+1 

−a 1 
, if B̄ < 0 and a α1 p 1 > | a 0 | α p 0 ; 

a 1 | a 0 | +1 (
k 

a 1 p 1 | a 0 | p 0 

)
1 

1 −α − a 1 | a 0 | 
+1 

| a 0 | , if B̄ < 0 and a α1 p 1 < | a 0 | α p 0 . 

(B.1) 

In particular, 

arg max 
θ∈ R 

V (θ ) 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

> 0 , if B̄ < 0 and a α1 p 1 > | a 0 | α p 0 ; 

< 0 , if B̄ < 0 and a α1 p 1 < | a 0 | α p 0 ; 

> 0 , if B̄ > 0 and a 1 p 1 > | a 0 | p 0 ; 
< 0 , if B̄ > 0 and a 1 p 1 < | a 0 | p 0 ; 
= 0 , if B̄ > 0 and a 1 p 1 = | a 0 | p 0 . 

We start with the proof of (i) and only show the monotonically increasing case since the proof for the monotonically

decreasing case is similar. First, it follows from Proposition 3 in He and Zhou (2011a) that V (·) is continuously differentiable

on (0 , + ∞ ) and (−∞ , 0) . Note that here it suffices to only consider the two cases of B̄ = 1 and B̄ = −1 based on the result

in the first part. We first show that in the case of B̄ = 1 , V ′ (θ ) > 0 for any θ < 0 . In fact, for θ < 0 , we have 

V 

′ (θ ) 

α
= 

∫ − 1 
θ

−∞ 

(θs + 1) α−1 sdF (s ) + k 

∫ + ∞ 

− 1 
θ

(−θs − 1) α−1 sdF (s ) 

≥
∫ − 1 

θ

−∞ 

(θs + 1) α−1 sdF (s ) + 

∫ + ∞ 

− 1 
θ

(−θs − 1) α−1 sdF (s ) 

= 

∫ 0 

−∞ 

(θs + 1) α−1 sdF (s ) + 

∫ + ∞ 

0 

| θs + 1 | α−1 sdF (s ) , (B.2) 

where the inequality follows from k > 1 , which comes from the well-posedness condition (3), and the relation 

∫ + ∞ 

− 1 
θ

(−θs −
1) α−1 sdF (s ) ≥ 0 . Then by doing a change of variables in the integral of the first term in (B.2) , we get 

V 

′ (θ ) 

α
≥

∫ + ∞ 

0 

| θs + 1 | α−1 sdF (s ) −
∫ + ∞ 

0 

(−θs + 1) α−1 sd[ −F (−s )] . 

Using the above inequality, the relation | θs + 1 | α−1 > (−θs + 1) α−1 for θ < 0 , s > 0 , and the strict increasingness of F (s ) +
F (−s ) on s > 0 , we get that V ′ (θ ) > 0 for θ < 0 . 

We now show that in the case of B̄ = −1 , d[ V (θ ) − V (−θ )] /dθ > 0 for any θ > 0 . It is easy to see 

d[ V (θ ) − V (−θ )] 

dθ
= α

(∫ + ∞ 

1 
θ

(θs − 1) α−1 sdF (s ) + k 

∫ 1 
θ

−∞ 

(−θs + 1) α−1 sdF (s ) 

+ 

∫ − 1 
θ

−∞ 

| θs + 1 | α−1 sdF (s ) + k 

∫ + ∞ 

− 1 
θ

(θs + 1) α−1 sdF (s ) 
)
. (B.3) 

Because F (s ) + F (−s ) is strictly increasing on s > 0 , it follows that ∫ + ∞ 

1 
(θs − 1) α−1 sdF (s ) + 

∫ − 1 
θ

−∞ 

| θs + 1 | α−1 sdF (s ) = 

∫ + ∞ 

1 
(θs − 1) α−1 sd[ F (s ) + F (−s )] > 0 , 
θ θ

15 If there is a no-shorting constraint, the optimal policy is still piecewise linear. We also conclude that arg max θ≥0 V (θ ) > 0 if the actual market is good, 

and arg max θ≥0 V (θ ) = 0 if the actual market is bad based on the fact that V ′ (0+) = αμ for B̄ = 1 and V ′ (0+) = kαμ for B̄ = −1 . 
16 From the proof of this theorem we find that for the case of B̄ < 0 and a α1 p 1 = | a 0 | α p 0 , the behavioral portfolio choice problem (2) has two optimal 

solutions: 1 
a 1 

+ 

| a 0 | 
a 1 

+1 (
k 

1 
1 −α −1 

)
| a 0 | 

and −
[

1 
| a 0 | + 

a 1 | a 0 | +1 (
k 

1 
1 −α −1 

)
a 1 

]
. 
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and ∫ 1 
θ

−∞ 

(−θs + 1) α−1 sdF (s ) + 

∫ + ∞ 

− 1 
θ

(θs + 1) α−1 sdF (s ) = 

∫ 1 
θ

−∞ 

(−θs + 1) α−1 sd[ F (s ) + F (−s )] > 0 . 

The preceding two inequalities together with (B.3) imply that d[ V (θ ) − V (−θ )] /dθ > 0 for θ > 0 . 

Moreover, by Proposition 3 in He and Zhou (2011a) , V ′ (0+) = αμ when B̄ = 1 , and V ′ (0+) = kαμ when B̄ = −1 . Note

that when s �→ F (s ) + F (−s ) is strictly increasing on s > 0 , the mean μ > 0 and we thus conclude that the optimal solution

of (2) must be positive for the monotonically increasing case. 

(ii). We first consider the case of B̄ = −1 . It is easy to see that 

V (θ ) = 

⎧ ⎨ 

⎩ 

(θa 0 − 1) α p 0 − k (−θa 1 + 1) α p 1 , −∞ < θ < 

1 
a 0 

; 

−k 
(
( −θa 1 + 1) α p 1 + (−θa 0 + 1) α p 0 

)
, 1 

a 0 
< θ < 

1 
a 1 

; 

( θa 1 − 1) α p 1 − k (−θa 0 + 1) α p 0 , 
1 
a 1 

< θ < + ∞ , 

as well as 

V 

′ (θ ) = 

⎧ ⎨ 

⎩ 

α(θa 0 − 1) α−1 a 0 p 0 + kα(−θa 1 + 1) α−1 a 1 p 1 , −∞ < θ < 

1 
a 0 

; 

kα
(
( −θa 1 + 1) α−1 a 1 p 1 + (−θa 0 + 1) α−1 a 0 p 0 

)
, 1 

a 0 
< θ < 

1 
a 1 

; 

α( θa 1 − 1) α−1 a 1 p 1 + kα(−θa 0 + 1) α−1 a 0 p 0 , 
1 
a 1 

< θ < + ∞ . 

It thus follows that lim θ→±∞ 

V ′ (θ ) = 0 , lim θ→ 1 /a 0 
V ′ (θ ) = −∞ , lim θ→ 1 /a 1 

V ′ (θ ) = + ∞ , lim θ→ 0 V 
′ (θ ) = kα(a 1 p 1 + a 0 p 0 ) . This

together with V ′′ (θ ) = kα(1 − α)[(−θa 1 + 1) α−2 a 2 
1 

p 1 + (−θa 0 + 1) α−2 a 2 
0 

p 0 ] > 0 on (1 /a 0 , 1 /a 1 ) implies that the maximum

point of V (·) must be in (−∞ , 1 /a 0 ) ∪ (1 /a 1 , + ∞ ) no matter whether a 1 p 1 + a 0 p 0 > 0 , a 1 p 1 + a 0 p 0 = 0 or a 1 p 1 + a 0 p 0 < 0 .

Then letting V ′ (θ ) = 0 gives that V (·) has two candidates for extreme points θ− ∈ (−∞ , 1 /a 0 ) and θ+ ∈ (1 /a 1 , + ∞ ) : 

θ− = 

a 1 | a 0 | +1 (
k 

a 1 p 1 | a 0 | p 0 

)
1 

1 −α − a 1 | a 0 | 
+ 1 

a 0 
, θ+ = 

| a 0 | 
a 1 

+1 (
k 

| a 0 | p 0 
a 1 p 1 

)
1 

1 −α − | a 0 | 
a 1 

+ 1 

a 1 
. 

The maximum point of V (·) is then given by either θ− or θ+ . Note that from the well-posedness condition (3), it holds that

[(ka 1 p 1 ) / (| a 0 | p 0 )] 
1 

1 −α − a 1 / | a 0 | > 0 and 

[(k | a 0 | p 0 ) / (a 1 p 1 )] 
1 

1 −α − | a 0 | /a 1 > 0 , implying θ− < 1 /a 0 and θ+ > 1 /a 1 . 

Let � = (a α
1 

p 1 ) / (| a 0 | α p 0 ) and substitute p 1 = (| a 0 | α p 0 �) /a α
1 

into V (θ+ ) and V (θ−) , respectively. We then get that

 (θ+ ) = −(1 + | a 0 | /a 1 ) 
α p 0 [(k/� ) 

1 
1 −α − 1] 1 −α� and V (θ−) = −(1 + | a 0 | /a 1 ) 

α p 0 [(k�) 
1 

1 −α − 1] 1 −α . Note that k� > 1 and k/� >

1 from the well-posedness condition. It is easy to verify that V (θ+ ) > V (θ−) if � > 1 , and V (θ+ ) < V (θ−) if � < 1 . Thus, the

optimal solution of (2) for the case of B̄ = −1 is positive if a α
1 

p 1 > | a 0 | α p 0 and negative if a α
1 

p 1 < | a 0 | α p 0 . 

We now consider the case of B̄ = 1 . Similar to the case of B̄ = −1 , some simple calculations give lim θ→±∞ 

V ′ (θ ) = 0 ,

lim θ→ 1 / | a 0 | V 
′ (θ ) = −∞ , lim θ→−1 /a 1 

V ′ (θ ) = + ∞ , lim θ→ 0 V 
′ (θ ) = α(a 1 p 1 + a 0 p 0 ) , and V ′′ (θ ) < 0 on (−1 /a 1 , 0) ∪ (0 , 1 / | a 0 | ) .

As a consequence, there is a unique local maximum point that locates in (0 , 1 / | a 0 | ) if μ = a 1 p 1 + a 0 p 0 > 0 and in (−1 /a 1 , 0)

if μ < 0 , and is equal to zero if μ = 0 . We next show that V ′ (θ ) � = 0 for any θ ∈ (1 / | a 0 | , + ∞ ) . Suppose, to the contrary, that

 

′ (θ ) = 0 for some θ̄ ∈ (1 / | a 0 | , + ∞ ) . Some simple calculations give that 

θ̄ = 

1 + 

a 1 | a 0 | +1 (
a 1 p 1 

k | a 0 | p 0 

)
1 

1 −α − a 1 | a 0 | 

| a 0 | . 

It follows from the well-posedness condition that 
(

a 1 p 1 
k | a 0 | p 0 

) 1 
1 −α − a 1 | a 0 | < 0 and hence θ̄ < 1 / | a 0 | , which yields a contradiction.

Similarly, V ′ (θ ) � = 0 for any θ ∈ (−∞ , −1 /a 1 ) . Thus, in the case of B̄ = 1 , the optimal solution of (2) is positive when μ > 0 ,

negative when μ < 0 and zero when μ = 0 . The expression in (B.1) can be obtained by letting the derivative of V (θ ) being

zero. 

Proof of Proposition 2.. We only show the case where the reference point is updated according to the non-recursive up-

dating rule (5) . The recursive case is analogous. We prove the statement by induction over t . The case t = 0 is trivial by

taking S(0) = 1 . Suppose that the statement holds up to time t . Then 

B 

s 
i (t) = ρx i (t) + 

t ∑ 

r=0 

[ 
w 

(
r + 1 

t + 1 

)
− w 

(
r 

t + 1 

)] 
x i (r) 

= x i (0) 
(
ρS(t) + 

t ∑ 

r=0 

[ 
w 

(
r + 1 

t + 1 

)
− w 

(
r 

t + 1 

)] 
S(r) 

)
. 
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We can see that whether the current wealth lies over or below the current reference point does not depend on the investor.

Specifically, the expression x i (t) ≥ B s 
i 
(t) is equivalent to 

S(t) ≥ ρS(t) + 

t ∑ 

r=0 

[ 
w 

(
r + 1 

t + 1 

)
− w 

(
r 

t + 1 

)] 
S(r) . 

Thus, the piecewise linearity coefficient depends only on F t , but not the investor i = 1 , . . . , n . Hence, 

x i (t + 1) = x i (t) + γ ∗(t )(x i (t ) − B 

s 
i (t )) R (t ) 

= x i (0) 
(

S(t) + γ ∗(t) 
(
(1 − ρ) S(t) −

t ∑ 

r=0 

[ 
w 

(
r + 1 

t + 1 

)
− w 

(
r 

t + 1 

)] 
S(r) 

)
R (t) 

)
is of the form x i (t + 1) = S(t + 1) x i (0) by taking 

S(t + 1) = S(t) + γ ∗(t) 
(
(1 − ρ) S(t) −

t ∑ 

r=0 

[ 
w 

(
r + 1 

t + 1 

)
− w 

(
r 

t + 1 

)] 
S(r) 

)
R (t) , (B.4) 

which is independent of the investor. Note that here γ ∗(t) is defined by 

γ ∗(t) = 

{ 

γ+ , if (1 − ρ) S(t) − ∑ t 
r=0 

[ 
w 

(
r+1 
t+1 

)
− w 

(
r 

t+1 

)] 
S(r) > 0 ; 

γ−, otherwise, 

and is thus F t -measurable. �

Proof of Proposition 3.. Clearly, it follows from wealth dynamics (7) that { H(t) } t≥0 is nondecreasing with probability one,

hence either the limit lim t→∞ 

E [ H(t)] exists or lim t→∞ 

E [ H(t)] = + ∞ . 

Note that under Assumption 3 , μ > 0 and γ− < 0 . Thus, from (7) we have E [ x i (t + 1)] = E [ x i (t)] + μ| γ−| E [ B s 
i 
(t) −

x i (t)] ≥ E [ x i (t)] . The first conclusion follows. From (7) we also have E 

[∑ n 
i =1 x i (t + 1) 

]
≥ E 

[∑ n 
i =1 x i (t) 

]
+ ιμ| γ−| E [ H(t) −

h (t)] , where we use the moderation property of the reference point formation rule implying that 
∑ n 

i =1 (B s 
i 
(t) − x i (t)) ≥

ι
∑ n 

i =1 ( max j∈N i x j (t) −x i (t)) ≥ ι(H(t) − h (t)) . Similarly, E [ 
∑ n 

i =1 x i (t + 1)] ≤ E [ 
∑ n 

i =1 x i (t)] + nμ| γ−| E [ H(t) − h (t)] and thus

the inequalities in this proposition follow. 

We now show the equivalence of (a), (b) and (c). (a) �⇒ (b) is obvious, and (b) �⇒ (c) follows from the first inequal-

ity of the relation in this proposition. We next show that (c) �⇒ (a). It follows from the dynamics (7) that h (t) ≤ H(t −
1) and then H(t) − H(t − 1) ≤ H(t) − h (t) . Therefore, 

∑ ∞ 

t=1 E [ H(t) − H(t − 1)] ≤ ∑ ∞ 

t=1 E [ H(t) − h (t)] < + ∞ , which implies

lim t→∞ 

E [ H(t)] < + ∞ . Thus, (c) �⇒ (a) follows. 

We now show the second part. First it follows from (c) that lim t→∞ 

E [ H(t) − h (t)] = 0 . As a result, lim t→∞ 

E [ x i (t)] = H 

∗

for all i because E [ h (t)] ≤ E [ x i (t)] ≤ E [ H(t)] . �

Proof of Lemma 1.. Let i 0 , j 0 be two arbitrary nodes with x i 0 (t) = h (t ) and x j 0 (t ) = H(t) . We have x i (t + 1) = (1 −
φλ(t)) x i (t) + φλ(t) H(t) , i = 1 , ..., n . Then x j 0 (t + 1) = x j 0 (t) = H(t) . We complete the proof by considering the following two

cases. 

• 1 − φλ(t) ≥ 0 . In this case, it is easy to verify that x i 1 (t + 1) ≤ x i 2 (t + 1) for any i 1 , i 2 with x i 1 (t) ≤ x i 2 (t) . This implies

h (t + 1) = x i 0 (t + 1) = (1 − φλ(t )) h (t ) + φλ(t ) H(t ) and H(t + 1) = x j 0 (t + 1) = H(t) . Therefore, 

H(t + 1) − h (t + 1) = x j 0 (t + 1) − x i 0 (t + 1) = (1 − φλ(t ))(H(t ) − h (t)) . 

• 1 − φλ(t) < 0 . In this case, x i 1 (t + 1) ≥ x i 2 (t + 1) for any i 1 , i 2 with x i 1 (t) ≤ x i 2 (t) , which implies that H(t + 1) = x i 0 (t +
1) and h (t + 1) = x j 0 (t + 1) . Therefore, 

H(t + 1) − h (t + 1) = x i 0 (t + 1) − x j 0 (t + 1) = (φλ(t) − 1)(H(t) − h (t)) . 

The proof is completed. �

Proof of Proposition 4.. Denote 

ζ (λ) := E | 1 − R (t) | γ−| λ| = 

∫ 1 
| γ−| λ

−∞ 

(1 − | γ−| λs ) dF (s ) + 

∫ + ∞ 

1 
| γ−| λ

(| γ−| λs − 1) dF (s ) , 

which is a convex function on [0,1]. We first consider the absolutely continuous case. It is easy to verify that 

ζ ′ (λ) = | γ−| 
(∫ + ∞ 

1 
| γ−| λ

sdF (s ) −
∫ 1 

| γ−| λ

−∞ 

sd F (s ) 
)

= | γ−| 
(

2 

∫ + ∞ 

1 
| γ−| λ

sd F (s ) − μ
)
, 

and hence lim 0 <λ→ 0 ζ
′ (λ) = −| γ−| μ < 0 . We complete the proof of (i) by considering the following two cases. 

• ζ (1) > 1 . It can be seen that the root of ζ (·) = 1 on (0,1) is unique, denoted as λth . Then it follows that ζ (λ) < 1 for

0 < λ < λth , and ζ (λ) > 1 for λth < λ ≤ 1 . 
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• ζ (1) ≤ 1 . In this case, ζ (λ) < 1 for any λ ∈ (0 , 1) . 

We now consider the discrete distribution case. We observe that ζ (·) is piecewise linear, continuous and differentiable 

except at points in set � := { 1 / (| γ−| a i ) , | γ−| a i > 1 } , and lim 0 <λ→ 0 ,λ �∈ � ζ ′ (λ) = −| γ−| μ. The conclusion for discrete distribu-

tion case follows from the preceding observations. �

Proof of Proposition 5.. (i) Here we prove only the first part for the case of an absolutely continuous distribution since the

proof for the case of a discrete distribution is similar. We can see that the function 

h̄ (s ) := 

∫ + ∞ 

s 

sdF (s ) + s (F (s ) − 1) 

is nonincreasing on (0 , + ∞ ) and lim s → + ∞ ̄

h (s ) = 0 by noting that h̄ ′ (s ) = F (s ) − 1 ≤ 0 and lim s → + ∞ 

(F (s ) − 1) / (1 /s ) =
− lim s → + ∞ 

s 2 f (s ) = 0 from Assumption 1 . Because h̄ (0) > μ/ 2 , we claim that the equation h̄ (s ) = μ/ 2 has a unique root,

denoted as s ∗, on (0 , + ∞ ) . If h̄ ′ (s ) < 0 for all s > 0 , the claim is obvious. Otherwise let ˆ s be the smallest number such that

h̄ ′ ( ̂ s ) = 0 (i.e., F ( ̂ s ) = 1 ). Therefore, h̄ (s ) = 0 for s ≥ ˆ s , which implies that h̄ (·) has a unique root on (0 , ̂  s ) and then the claim

follows. 

Recall the notation ζ (λ) = E [ | 1 − R (t) | γ−| λ| ] given in last proof. By some simple algebraic computations we obtain that 

ζ (λ) = 1 + 2 | γ−| λ
[ 

h̄ 

(
1 

| γ−| λ
)

− μ

2 

] 
. 

If | γ−| s ∗ ≤ 1 , then h̄ (1 / (| γ−| λ)) ≤ h̄ (1 / | γ−| ) ≤ h̄ (s ∗) = 

μ
2 , implying that ζ (λ) ≤ 1 for any 0 < λ ≤ 1 and thus λth = 1 . If

| γ−| s ∗ > 1 , then ζ (1 / (| γ−| s ∗)) = 1 and thus λth = 1 / (| γ−| s ∗) . This completes the proof of the first part of (i). The formula for

elliptical distributions can be obtained by a change of the variable z = (s − μ) /σ and the formula for two-point distributions

can be obtained by solving directly (10) . 

(ii) Here we only show the conclusion λth < 1 for sufficiently small μ if lim 0 <μ→ 0 γ−(μ) < 0 since all other conclusions

can be obtained directly from the arguments given in (i). We can see that it suffices to show that when μ = 0 , 
∫ + ∞ 

τ sdF (s ) +
τ (F (τ ) − 1) > 0 , where 0 < τ = lim 0 <μ→ 0 1 / | γ−(μ) | < + ∞ . This is true since otherwise F (τ ) = 1 , which contradicts the

following Lemma 2 . Therefore, the desired conclusion follows. �

Lemma 2. Suppose that the excess return of R (t) is bounded from above: R (t) ≤ M for some M > 0 and 
∫ M 

−∞ 

sdF (s ) > 0 . Then

| γ−| M > 1 . 

Proof. To prove this, it suffices to show that when B̄ = −1 , V ′ (θ ) > 0 for 0 < θ ≤ 1 /M. In fact, when 0 < θ ≤ 1 /M, V (θ ) =
−k 

∫ M 

−∞ 

(−θs + 1) αdF (s ) and 

V 

′ (θ ) = kα

∫ M 

−∞ 

(−θs + 1) α−1 sdF (s ) 

= kα
(∫ 0 

−∞ 

(−θs + 1) α−1 sdF (s ) + 

∫ M 

0 

(−θs + 1) α−1 sdF (s ) 
)

≥ kα

∫ M 

−∞ 

sdF (s ) > 0 , 

where the first inequality follows from (−θs + 1) α−1 < 1 , s < 0 and (−θs + 1) α−1 > 1 , 0 < s < M. �

Proof of Proposition 6.. Recall that φλ(t) = R (t) | γ−| λ. In this proof we abbreviate ξλ, ηλ as ξ , η for simplicity. From the

proof of Lemma 1 , we have 

h (t + 1) = 

{
H(t) , if φλ(t) > 1 ; 
h (t) + φλ(t )(H(t ) − h (t)) , if φλ(t) ≤ 1 , 

H(t + 1) = 

{
h (t) + φλ(t )(H(t ) − h (t)) , if φλ(t) > 1 ; 
H(t) , if φλ(t) ≤ 1 . 

As a result, (
E [ h (t + 1)] 
E [ H(t + 1)] 

)
= 

(
ξ 1 − ξ

−η 1 + η

)(
E [ h (t)] 
E [ H(t)] 

)
. 

It is easy to verify that the two eigenvalues of the system matrix 

A := 

(
ξ 1 − ξ

−η 1 + η

)
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are 1 and ξ + η, and when ξ + η � = 1 , the eigenvectors corresponding to eigenvalues 1, ξ + η are (1 , 1) T and (1 − ξ , η) T ( T 

denotes the transpose of a vector), respectively. Consequently, 

A 

t = 

(
1 1 − ξ
1 η

)(
1 0 

0 (ξ + η) t 

)(
1 1 − ξ
1 η

)−1 

= 

1 
1 −ξ−η

(
(1 − ξ )(ξ + η) t − η 1 − ξ − (1 − ξ )(ξ + η) t 

η(ξ + η) t − η 1 − ξ − η(ξ + η) t 

)
. 

With this result we ge 

E [ h (t)] = 

(1 −ξ )(ξ+ η) t (H(0) −h (0)) −(1 −ξ ) H(0)+ ηh (0) 
ξ+ η−1 

, 

E [ H(t)] = 

η(ξ+ η) t (H (0) −h (0)) −(1 −ξ ) H (0)+ ηh (0) 
ξ+ η−1 

. 
(B.5) 

Note that ξλ + ηλ = E [ | 1 − φλ(t) | ] . From the proof of Proposition 4 , we have ξλ + ηλ < 1 for 0 < λ < λth , and ξλ + ηλ > 1

for λ > λth . We claim that ηλ > 0 for any λ ≥ λth since otherwise P 

(
R (t) > 1 / (| γ−| λ0 ) 

)
= 0 for some λ0 ≥ λth and hence

ξλ0 
= 1 − μ| γ−| λ0 < 1 . This contradicts ξλ + ηλ ≥ 1 for λ ≥ λth , so ηλ > 0 for λ ≥ λth . Then it follows from (B.5) that 

(1 − ξ )(ξ + η) t (H(0) − h (0)) 

ξ + η − 1 

= E [ h (t)] − � 

≤ E [ x i (t)] − � 

≤ E [ H(t)] − � = 

η(ξ + η) t (H(0) − h (0)) 

ξ + η − 1 

, 

where � := [(1 − ξ ) H(0) − ηh (0)] / [1 − ξ − η] . Consequently, when λ < λth , each investor’s expected wealth converges to

the common finite level � with the exponential rate ξλ + ηλ < 1 . The first conclusion follows noting that each investor’s

expected wealth is increasing over time as shown in Proposition 3 . 

We now show the second conclusion. First, it follows from (9) that 

E [ x i (t + 1)] = (1 − μ| γ−| λ) E [ x i (t)] + μ| γ−| λE [ H(t)] , 

which implies that 

• when μ| γ−| λ ≥ 1 , E [ x i (t + 1)] ≥ E [ H(t)] ; 

• when μ| γ−| λ < 1 , E [ x i (t + 1)] ≥ (1 − μ| γ−| λ) x i (0) + μ| γ−| λE [ H(t)] noting the nondecreasingness of { E [ x i (t)] } t≥0 . 

In summary, min { 1 , μ| γ−| λ} E [ H(t)] ≤ E [ x i (t + 1)] ≤ E [ H(t + 1)] . This combined with (B.5) implies that when λ > λth ,

lim t→∞ 

(E [ x i (t)]) 1 /t = ξλ + ηλ > 1 , which is the implication of the exponential growth rate in the second expression of the

theorem. �

Proof of Proposition 7.. From (13) we have 

E 

[ 
1 

W (t + 1) 

] 
= E 

[ 
1 

| 1 − φλ(t) | 
] 
E 

[ 
1 

W (t) 

] 
+ 2 n E 

[ 
φλ(t) 

| 1 − φλ(t) | 
] 
E 

[ ∑ n 
i =1 (H(t) − x i (t)) ∑ n 

i =1 

∑ n 
j=1 | x i (t) − x j (t) | 

] 
. 

Therefore, the conclusion (i) follows from the above equality and the boundedness ∑ n 
i =1 (H(t) − x i (t)) ∑ n 

i =1 

∑ n 
j=1 | x i (t) − x j (t) | ≤

n (H(t) − h (t)) ∑ n 
i =1 

∑ n 
j=1 | x i (t) − x j (t) | 

= 

n (H(0) − h (0)) ∑ n 
i =1 

∑ n 
j=1 | x i (0) − x j (0) | , 

where the equality follows from Lemma 1 and the relation (12) . 

When 0 < λ < λth , E [ | 1 − φλ(t) | ] < 1 by Proposition 4 . The conclusion (ii) follows from the strict inequality E [1 / | 1 −
φλ(t) | ] > 1 / E [ | 1 − φλ(t) | ] and the continuity of function λ �→ E [1 / | 1 − φλ(t) | ] . 

We observe that E [1 /GGC(t)] ≥ E [1 /W (t)] since a wealth distribution with a negative total wealth contributes to a pos-

itive value of 1 /GGC(t) but a negative value of 1 /W (t) , and because for a wealth distribution with positive total wealth,

the adjustment factor in the definition of the generalized Gini coefficient is no greater than one. Thus, (iii) follows from the

results in (i), (ii) and the preceding observation. �

Proof of Proposition 8.. Here we only show Case 2 in Table 4 because the proof for Case 3 is similar. Note that γ− > 0

in Case 2. From the “Upward-Looking” property in the reference point formation rule and Theorem 1 we have x i (t + 1) =
x i (t) − R (t ) γ−(B s 

i 
(t ) − x i (t)) and consequently, from the “Moderation” property, 

E 

[ n ∑ 

i =1 

x i (t + 1) 
] 

≤ E 

[ n ∑ 

i =1 

x i (t) 
] 

− ιμγ−E [ H(t) − h (t)] . (B.6) 
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We first show that 
∑ ∞ 

t=0 E [ H(t) − h (t)] = + ∞ . Suppose, to the contrary, that 
∑ ∞ 

t=0 E [ H(t) − h (t)] < + ∞ . Consequently,

lim t→∞ 

E [ H(t) − h (t)] = 0 and thus lim t→∞ 

E [ H(t) − x i (t)] = 0 for all i because h (t) ≤ x i (t) . However, a contradiction arises

since 
{
E [ x i (t)] 

}
t≥0 is nonincreasing, { E [ H(t)] } t≥0 is nondecreasing and there exists some investor i such that x i (0) < H(0) . 

From (B.6) we have E [ 
∑ n 

i =1 x i (t + 1)] ≤ ∑ n 
i =1 x i (0) − ιμγ−

∑ t 
s =0 E [ H(s ) − h (s )] . Together with 

∑ ∞ 

t=0 E [ H(t) − h (t)] = + ∞ ,

that leads to lim t→∞ 

E [ 
∑ n 

i =1 x i (t)] = −∞ . Hence, lim t→∞ 

E [ h (t)] = −∞ , and lim t→∞ 

E [ H(t) − h (t)] = + ∞ follows noting that

{ E [ H(t)] } t≥0 is nondecreasing. �
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