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A B S T R A C T

We consider a large rational expectations economy where traders can share information with
each other via an information network and investigate the impact of network connectedness on
market equilibrium outcomes. We find that in the equilibrium with endogenous information,
increasing network connectedness increases the total information in the market and trading
volume, improves market efficiency, and enhances liquidity if and only if the market is suffi-
ciently informationally efficient. Additionally, we provide a necessary and sufficient condition
on the monotonicity of traders’ welfare over network connectedness. We also show that the
implications in the baseline model also hold for some extensions.

. Introduction

The emergence of novel social media platforms and technological innovations has markedly facilitated the dissemination of
nformation, rendering it more accessible, expedient, and efficacious. The exchange of information among participants in the market
hrough social networks exerts a pivotal influence on the outcomes of market equilibrium. Communicated information among
nvestors impacts their beliefs regarding asset fundamentals, which decisively shape investors’ optimal asset demand. This in turn
mpacts equilibrium prices which emerge as an endogenous consequence of the equilibrium-seeking mechanism that aligns aggregate
emand with supply. The aim of this paper is to analyze the impact of network connectedness of communication networks on the
ncentives for information acquisition and traders’ welfare, and the equilibrium statistics including market efficiency, liquidity and
rading volume.

We consider a single-period model and there is one risky asset and one riskless asset in the market. There is also noise trade in
he market to prevent prices from being fully revealing. Each trader initially has one private signal related to the asset payoff with
signal-dependent cost, and can also share information with other traders in their network. Traders’ preferences are represented

y negative exponential utility functions, and traders make optimal demands based on their individual private information, the
nformation received from their neighbors and the publicly observable price information. The equilibrium price of the risky asset is
ndogenously determined by market-clearing conditions.

We first show that there exists a unique symmetric linear endogenous equilibrium. Then, we show that traders’ incentive for
nformation acquisition is reduced as the network connectedness increases. The intuition is that when traders realize that they can
eceive more information from other traders, they have a temptation to free ride on the signals from other traders and reduce their
nformation acquisition in the first place to save cost. Moreover, we show that the information of all traders or the total information
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in the market increases with network connectedness although each trader’s incentive for information acquisition is lower. This is
the first main contribution of the paper.

Additionally, we show that, in the endogenous equilibrium, increasing network connectedness improves market efficiency,
ncreases trading volume, and enhances liquidity if and only if the market is sufficiently informationally efficient.

The second main contribution of the paper is that we provide necessary and sufficient conditions on the monotonicity of traders’
elfare over network connectedness. Specifically, we show that a sign-keeping transformation of the derivative of the certainty
quivalent is strictly decreasing in network connectedness. Finally, we consider three extensions of more general cost functions, an
vailable public information in the market, and imperfect information sharing among traders, and show that the implications of
etwork connectedness in the baseline model also hold for the three extensions.
Literature Review. Our work contributes to the recent literature on the implications of information networks on market

quilibrium outcomes (Colla and Antonio (2010), Enward et al. (2019), Han and Yang (2013), Ozsoylev and Walden (2011), Walden
2019)). Our work is mostly related to the work of Han and Yang (2013). However, while our model shares the similar idea with
hese work that traders are socially connected with each other via an information network, our model diverges from their framework
n a crucial aspect: while their model encompasses both informed and uninformed traders, our economy solely comprises informed
raders.1 This distinction gives rise to contrasting market implications regarding network connectedness. Han and Yang (2013)

demonstrate that, in the presence of both informed and uninformed traders, network connectedness leads to a decrease in the total
information available in the market. Consequently, increasing network connectedness adversely affects market efficiency, decreases
trading volume, and enhances liquidity under the condition of sufficient informational inefficiency. Conversely, our findings paint
a different picture. By focusing exclusively on informed traders, our model captures a distinct dynamic. The absence of uninformed
traders naturally closes the free-riding channel associated with their signals. As a result, the overall crowding-out effect, as observed
in Han and Yang (2013), weakens in our economy. This, in turn, leads to an intriguing outcome—the total information in our
market actually increases with network connectedness. The disparity in overall market information immediately translates into
divergent implications for market efficiency, trading volume, and liquidity since these market quality indexes depend on network
connectedness and endogenous signal precision only in terms of their product, i.e., the total information in the market.2

In the case of endogenous information, Han and Yang (2013) initially consider a scenario where traders can either acquire an
ndividual signal of fixed precision by incurring a constant cost or choose not to acquire any signal at all, without incurring any
ost. Additionally, they explore an expanded setting in Subsection 5.2, where they introduce a signal-dependent cost function that
losely resembles our own model’s framework. While Han and Yang (2013) characterize the endogenous equilibrium by determining
fraction of informed traders where both informed and uninformed traders exhibit identical ex-ante welfare, as well as an optimal

ignal precision where traders have no incentive to deviate given the strategies of other traders, our economy solely revolves around
etermining the optimal signal precision. Despite the similarity in the modeling of information sharing, it is important to note that
ur economy is not a special case of Han and Yang (2013). Firstly, as the noises embedded in the shared signals decrease,3 the

endogenous fraction of informed traders in Han and Yang (2013) tends towards zero.4 In contrast, in our economy, this fraction
remains fixed at one, signifying a fundamental distinction in considering only informed traders. Secondly, in Han and Yang (2013),
the extended model outlined in Subsection 5.2, the endogenous optimal signal precision is demonstrated to be independent of
network connectedness. However, in our research, we find that the endogenous optimal signal precision is indeed influenced by
network connectedness, illustrating a nuanced departure from their findings.

Our work is also closely related to the theoretical work of Colla and Antonio (2010), Ozsoylev and Walden (2011), Walden (2019)
and the experimental work of Enward et al. (2019) that investigate the impact of information networks on market equilibrium
outcomes.5 Our model can be viewed as a special case of the economy of Ozsoylev and Walden (2011) with identical network
connectedness across all traders, which considers a large economy in which traders share information via a sparse network structure
with power law degree distributions. Colla and Antonio (2010) consider a dynamic finite-agent model where traders are locally
informationally connected via a cyclical information network. Walden (2019) considers a dynamic large economy where information
diffuses through a general information network. While these works study only the case of exogenous information, our focus is on
the case of endogenous information. Enward et al. (2019) study the implications of social communication for traders’ behavior as

1 The exclusion of uninformed traders in our model is supported by two justifications. Firstly, the proliferation of social media has significantly enhanced
he accessibility and speed at which agents can obtain information, thereby reducing search costs. Consequently, traders in contemporary developed markets are
ore likely to possess information, bolstering the rationale for our setting. Secondly, in financial markets, investors who lack essential information regarding

sset payoffs face substantial challenges in sustaining their presence over extended periods. In fact, the economies without uninformed traders have been widely
tudied in the literature, for example, Colla and Antonio (2010), Han et al. (2016) and Walden (2019).

2 Owing to the mathematical complexity of the expressions of trading volume and welfare in the economy of Han and Yang (2013), the authors analyze
he effects of network connectedness on trading volume and welfare with the help of numerical examples. Here, we provide a theoretical analysis of a different
odel.
3 Different from Han and Yang (2013) in which each (informed or uninformed) trader receives a noisy version of the signals of all informed traders, here

raders are assumed to receive perfect signals from their neighbors without noises for simplicity. In Section 4.3, we will relax this assumption to more general
ases of imperfect signal sharing and find that the main implications still hold.

4 See Proposition 3 in Han and Yang (2013). The endogenous fraction of informed traders therein misses a term ‘‘−𝜌𝑦 ’’ and the correct one should be
𝜇∗ = (2∕(𝑁𝜌𝑦 ))((𝜌𝜖−𝜌𝑦 )∕(𝑒2𝛾𝑐−1)−𝜌𝑣 )

1+
√

1+4(𝜌𝑥∕𝛾2 )((𝜌𝜖−𝜌𝑦 )∕(𝑒2𝛾𝑐−1)−𝜌𝑣 )((𝜌𝜖−𝜌𝑦 )∕(𝑁𝜌𝑦 )+(𝑁−1)∕𝑁)2
.

5 There is also extensive empirical research on the effects of social interactions on investment decisions by investors (Brown et al. (2008), Feng and Seasholes
2004), Hong et al. (2004, 2005), Ivkovic and Weisbenner (2007), Ozsoylev and Walden (2014), Pool et al. (2015), Shiller and Pound (1989)); see Kuchler and
2

troebel (2021) for a recent review.
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well as market equilibrium statistics by designing an experiment. Different from the experimental method in Enward et al. (2019),
our results are derived theoretically.

The paper is organized as follows. In Section 2 we introduce the model while in Section 3 we present the main results. Section 4
onsiders some extensions. Finally, Section 5 concludes. All proofs are in Appendix A. Some detailed proofs in the extensions can
e found in the Online Supplemental Material.

. The model

We consider a large noisy rational expectations economy where traders can share information with each other via an information
etwork. It is a single-period model, and there are two assets in the market: one risky asset that pays 𝑣 ∼ 𝑁(0, 1∕𝜌𝑣), 𝜌𝑣 > 0, at

the end of the trading period and one risk-free asset that pays zero interest with a perfectly elastic supply. The traders’ utility from
wealth 𝑤 is

𝑈 (𝑤) = − exp{−𝛾𝑤},

where 𝛾 > 0 is the absolute risk aversion coefficient of the traders. Consequently, the utility that trader 𝑖 derives from the amount
𝑑𝑖 invested in the risky asset is

𝑈 (𝑊 (𝑑𝑖)) = − exp{−𝛾𝑑𝑖(𝑣 − 𝑝)},

where 𝑊 (𝑑𝑖) = 𝑑𝑖(𝑣− 𝑝) represents the terminal wealth of trader 𝑖, and 𝑝 is the price of the risky asset that is publicly observable by
all traders. To prevent the price from being fully revealing, noise traders also exist in the economy besides rational traders, where
per-capita noise trade (supply) is denoted as 𝑥 ∼ 𝑁(0, 1∕𝜌𝑥), 𝜌𝑥 > 0, 𝑥 is independent of other random variables in the economy.

The large economy consists of 𝐺 ∈ N unconnected groups, denoted as 1,2,… ,𝐺, and each group contains 𝑁 traders. The
total number of traders in the large economy is correspondingly given by 𝐺𝑁 . We use the notation 𝑖, 𝑔 to denote the 𝑖th trader in
𝑔th group 𝑔 . Each trader can receive a private signal by paying a cost that depends on signal precision. Let 𝑠𝑖,𝑔 = 𝑣+ 𝜖𝑖,𝑔 denote the
private signal of trader 𝑖, 𝑔, where 𝜖𝑖,𝑔 ∼ 𝑁(0, 1∕𝜌𝜖), 𝜌𝜖 > 0, and the noise {𝜖𝑖,𝑔}𝑖,𝑔 are mutually independent and also independent of
other random variables. The cost function 𝑐(⋅) of information acquisition is assumed to be twice continuously differentiable, strictly
increasing, strictly convex, and satisfies the condition 𝑐′(0) = 0 (Han et al. (2016), Verrecchia (1982)).

A key feature of the large economy is that traders can share information with other traders in their group.6 We assume that each
trader 𝑖, 𝑔 can observe (𝑘−1) signals of other traders perfectly in his/her group 𝑔 via a 𝑘-cyclical graph besides his/her own signal
𝑠𝑖,𝑔 , where 1 ≤ 𝑘 ≤ 𝑁 is a positive integer. Let 𝑖,𝑔 denote the neighbor set of trader 𝑖, 𝑔 (𝑖 ∈ 𝑖,𝑔), where 𝑗th trader in group 𝑔 is
one neighbor of trader 𝑖, 𝑔 if and only if trader 𝑖, 𝑔 can observe the signal of trader 𝑗, 𝑔. Consequently, the information set of trader
𝑖, 𝑔 after information sharing with his/her neighbors is given by

𝑖,𝑔 = {𝑠𝑗,𝑔 , 𝑗 ∈ 𝑖,𝑔 , 𝑝}.

According to the assumption of 𝑘-cyclical graphs, |𝑖,𝑔| = 𝑘 for any 𝑖 = 1,… , 𝑁 and 𝑔 = 1,… , 𝐺. Similar to the parameter 𝑁 of
group size in Han and Yang (2013) and 𝛽 of the average node degree in Ozsoylev and Walden (2011), we interpret 𝑘 as ‘‘network
connectedness’’. A higher network connectedness means that traders can share information with more traders.

Finally, we introduce the definition of noisy rational expectations equilibrium (NREE) with endogenous information, where we
use 𝑠𝑖,𝑔(𝜌) to highlight that the precision of signal 𝑠𝑖,𝑔 is 𝜌, and 𝑑𝑖,𝑔(𝜌) to denote the demand strategy of trader 𝑖, 𝑔, where 𝜌 is the
precision of his/her private signal.

Definition 1. An NREE with endogenous information is a collection
(

(

𝜌𝑖,𝑔𝜖,𝑘, 𝑑
∗
𝑖,𝑔(𝜌

𝑖,𝑔
𝜖,𝑘)

)

𝑖=1,…,𝑁 ;𝑔=1,…,∞
, 𝑝
)

of optimal signal precision,
optimal demand strategies and a price such that

(i)
(

𝑑∗𝑖,𝑔(𝜌
𝑖,𝑔
𝜖,𝑘)𝑖=1,…,𝑁 ;𝑔=1,…,∞, 𝑝

)

constitutes an NREE with exogenous information
{

𝑠𝑖,𝑔(𝜌
𝑖,𝑔
𝜖,𝑘)

}

𝑖=1,…,𝑁 ;𝑔=1,…,∞
, i.e., for each 𝑖 =

1,… , 𝑁 and 𝑔 = 1,… ,∞, 𝑑∗𝑖,𝑔(𝜌
𝑖,𝑔
𝜖,𝑘) maximizes the conditional expected utility of trader 𝑖 in group 𝑔,

𝑑∗𝑖,𝑔(𝜌
𝑖,𝑔
𝜖,𝑘) ∈ argmax

𝑑
E
[

𝑈 (𝑊𝑖,𝑔(𝑑))
|

|

|

𝑠𝑗,𝑔(𝜌
𝑗,𝑔
𝜖,𝑘), 𝑗 ∈ 𝑖,𝑔 , 𝑝

]

,

and the market clears, i.e.,

lim
𝐺→∞

1
𝐺

𝐺
∑

𝑔=1

[

1
𝑁

𝑁
∑

𝑖=1
𝑑∗𝑖,𝑔(𝜌

𝑖,𝑔
𝜖,𝑘)

]

= 𝑥;

(ii) 𝜌𝑖,𝑔𝜖,𝑘 maximizes the ex-ante welfare of trader 𝑖 in group 𝑔 given the precision of other agents and resulting optimal strategies,
i.e.,

𝜌𝑖,𝑔𝜖,𝑘 ∈ argmax
𝜌𝑖

E
[

−exp
{

−𝛾
[

𝑑∗𝑖,𝑔(𝜌𝑖)(𝑣 − 𝑝) − 𝑐(𝜌𝑖)
]}]

. (1)

6 In Section 4.2, we will consider a more general setting that there is an additional public signal available to all traders in the market and show that the
3

ain implications still hold.
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In an NREE with endogenous information, each agent’s signal precision is optimal given the signal precision of other agents and
he resulting optimal strategies, and agents’ strategies constitutes an NREE with exogenous information given the precision of all
gents. Our economy shares the same market equilibrium as the economy of Ozsoylev and Walden (2011) with identical network
onnectedness across all traders. However, our focus is on the endogenous information acquisition, while Ozsoylev and Walden
2011) only consider the case of exogenous information.

. Main results

As traders are equally risk averse and have the same cost function, we naturally consider a symmetric equilibrium: 𝜌𝑖,𝑔𝜖,𝑘 = 𝜌𝜖,𝑘
for all 𝑖, 𝑔. The following proposition shows that there exists a unique symmetric linear NREE in the economy with endogenous
information.

Proposition 1. There exists a unique symmetric linear NREE with endogenous information in which the equilibrium price is given by7

𝑝 = 𝛼𝑣𝑣 − 𝛼𝑥𝑥, (2)

where

𝛼𝑣 =
𝜌𝜃 + 𝑘𝜌𝜖,𝑘

𝜌𝑣 + 𝜌𝜃 + 𝑘𝜌𝜖,𝑘
,

𝛼𝑥 =
𝛾 + 𝑘𝜌𝜖,𝑘𝜌𝑥𝛾−1

𝜌𝑣 + 𝜌𝜃 + 𝑘𝜌𝜖,𝑘
,

𝜌𝜃 =
(𝑘𝜌𝜖,𝑘)2

𝛾2
𝜌𝑥,

and 𝜌𝜖,𝑘 is the unique positive root to the following equation

2𝑐′(𝜌)
(

𝛾2𝜌𝑣 + 𝛾2𝑘𝜌 + 𝜌𝑥𝑘
2𝜌2

)

= 𝛾. (3)

For notational convenience, we denote

𝑧𝑘 = 𝑘𝜌𝜖,𝑘,

which represents the total signal precision of any trader (including his/her own information and that obtained from his/her
neighbors) and can also be taken as a measure of total information in the market or in the price8 because the network structure for
information sharing is symmetric.

Proposition 2. Increasing network connectedness reduces each trader’s information acquisition, i.e., 𝜕𝜌𝜖,𝑘∕𝜕𝑘 < 0 and increases the total
information in the market, i.e., 𝜕𝑧𝑘∕𝜕𝑘 > 0.

The first result in Proposition 2 can be intuitively understood as follows: When traders become aware that they can receive
additional information from their peers, they may be tempted to rely on the signals provided by others and reduce their own
information acquisition to save costs. This intuition aligns with the findings of Han and Yang (2013) and Enward et al. (2019).
However, it remains unclear whether the total information in the market increases despite each trader acquiring signals of lower
precision. The second result in Proposition 2 sheds light on this uncertainty. It reveals that the reduction in information acquisition
is not significant enough to offset the increase in the total information available in the economy. This finding contradicts the results
presented in Han and Yang (2013). The primary reason for this opposition lies in the fact that while both informed and uninformed
traders can simultaneously free-ride on other traders’ signals in Han and Yang (2013), the absence of uninformed traders in our
model naturally eliminates the free-riding channel associated with their signals. As a result, the overall crowding-out effect weakens
in our economy, leading to an increase in the total information available with greater network connectedness.

To illustrate this further, in Han and Yang (2013), informed traders recognize that increasing network connectedness brings
about a greater number of both informed and uninformed traders who free-ride on their signals. However, uninformed traders do
not share any information in return. Consequently, the incentive for informed traders to acquire information weakens. In contrast,
our model lacks uninformed traders, and thus the private signals of informed traders are only subject to free-riding by other informed
traders. This also weakens the incentive to acquire information. However, due to the absence of free-riding by uninformed traders,
the weakening effect on the incentive to acquire information in our model is not as pronounced as in the presence of uninformed
traders. Therefore, although increasing network connectedness still reduces each trader’s information acquisition in our paper due
to the crowding-out effect, the total information available in the market is enhanced, presenting a noteworthy departure from the
findings of Han and Yang (2013).

Next, we analyze the impact of network connectedness on market equilibrium statistics and traders’ welfare. Following Han and
Yang (2013), we use 1∕Var[𝑣|𝑝] to measure the market efficiency and 1∕𝛼𝑥 to measure the liquidity. Market efficiency refers to

7 There is no intercept in price function 𝑝 since we assume that all random variables have mean zero for notational convenience.
8 This can be seen from the relation 1∕Var[𝑣|𝑝] = 𝜌 + 𝑧2𝜌 ∕𝛾2 ∝ 𝑧2 as shown later.
4

𝑣 𝑘 𝑥 𝑘
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how well prices reflect all available information in the market. A liquid market means that a noise trading shock is absorbed by
the market without moving asset prices much. The trading volume is measured by E|𝑑𝑖,𝑔|, and the (ex-ante) welfare is given by the
erm in (1). We have the following proposition on the implications.

roposition 3. For the unique symmetric linear NREE with endogenous information,

(i) increasing network connectedness improves market efficiency and trading volume, and this enhances the liquidity if and only if the
market is sufficiently informationally efficient in the sense that 𝜌𝜃 + 2

√

𝜌𝜃∕𝜌𝑥 > 𝜌𝑣∕𝛾 + 1∕𝜌𝑥;
(ii) suppose that the cost function takes the form of 𝑐(𝜌) = 𝜉𝜌2, 𝜉 > 0,9 and denote

𝐴(𝑘) ∶= 4𝜉𝛾4𝑘𝜌3𝜖,𝑘 + (2𝛾𝑘𝜌𝑥 + 4𝜉𝛾6𝜌−1𝑥 − 𝛾𝜌𝑥𝑘
2 − 8𝜉𝛾4𝜌𝑣)𝜌2𝜖,𝑘 + 𝛾3(3 − 2𝑘)𝜌𝜖,𝑘 + 𝛾3𝜌𝑣 − 𝛾5𝜌−1𝑥 ,

where 𝜌𝜖,𝑘 is the unique positive root to Eq. (3). Thus, increasing network connectedness initially increases and eventually decreases
welfare if and only if 𝐴(1) > 0 and 𝐴(𝑁) < 0, increases welfare if and only if 𝐴(𝑁) ≥ 0, and decreases welfare if and only if
𝐴(1) ≤ 0.10

The results in part (i) contrast with the finding of Han and Yang (2013) that in the endogenous NREE, increasing network
connectedness harms market efficiency, decreases trading volume, and improves liquidity if and only if the market is sufficiently
informationally inefficient. In addition, Han and Yang (2013) show that, for the extended model in Subsection 5.2, the optimal
endogenous information precision is independent of network connectedness and the total information in the market (measured by
𝜌𝜃 in terms of our notation) decreases with network connectedness. The difference between the results in Han and Yang (2013) and
ours is a consequence of (i) the decreasing total information in Han and Yang (2013) and the increasing total information in our
model as shown by Proposition 2, and (ii) the equilibrium price and traders’ demand strategies and, consequently, market efficiency,
liquidity and trading volume depend on network connectedness 𝑘 and the endogenous information signal 𝜌𝜖,𝑘 only in terms of their
product 𝑘𝜌𝜖,𝑘.

Part (ii) presents a necessary and sufficient condition on the monotonicity of traders’ welfare over network connectedness. The
absence of uninformed traders in the market allows us to have a tractable analysis for traders’ welfare.11 Part (ii) tells us that
there are only three patterns of the monotonicity of welfare. In fact, each of the three patterns probably happens. For example,
by some simple calculations we see that when 𝜉 is very small, we have 𝐴(1) > 0 and 𝐴(𝑁) < 0, and when 𝜉 is very large, we
have 𝐴(𝑁) ≥ 0 if 𝜌𝑣 > 𝛾2∕𝜌𝑥 and 𝐴(1) ≤ 0 if 𝜌𝑣 < 𝛾2∕𝜌𝑥. To help understand the intuition behind the welfare result, let us see
the expression (A.1) in the Appendix for welfare. We can see that there are two components 𝑒2𝛾𝑐(𝜌𝜖,𝑘) Var

[

𝑣|𝑠𝑗,𝑔 , 𝑗 ∈ 𝑖,𝑔 , 𝑝𝑘
]

and
Var(𝑣 − 𝑝𝑘) that determine the welfare. As network connectedness 𝑘 increases, traders become better informed about the asset
payoff, and thus the conditional variance Var

[

𝑣|𝑠𝑗,𝑔 , 𝑗 ∈ 𝑖,𝑔 , 𝑝𝑘
]

decreases and the endogenous price gets closer to the asset payoff,
i.e., Var(𝑣 − 𝑝𝑘) decreases. Moreover, from Proposition 2, we know that 𝑒2𝛾𝑐(𝜌𝜖,𝑘) is decreasing in 𝑘. Hence, the two components
𝑒2𝛾𝑐(𝜌𝜖,𝑘) Var

[

𝑣|𝑠𝑗,𝑔 , 𝑗 ∈ 𝑖,𝑔 , 𝑝𝑘
]

and Var(𝑣 − 𝑝𝑘) are both decreasing in 𝑘. The direction of traders’ welfare with respect to network
connectedness depends on which one of the two components is the dominant one.

4. Extensions

In this section, we consider three extensions to illustrate the robustness of our results in the baseline model.

4.1. General cost functions of information acquisition

In the baseline model, we analyze the welfare effects of network connectedness using quadratic cost functions. Here, we provide
some numerical examples to illustrate the robustness of the welfare effects by considering more general cost functions 𝑐(𝜌) = 𝜉𝜌𝓁 ,
𝓁 ≥ 2.

The parameter settings are given as follows: The risk aversion coefficient 𝛾 = 2 (Han and Yang (2013)). We set 𝜌𝑣 = 𝜌𝑥 = 5,
𝜉 = 0.1 in Panel (a) of Figs. 1–4; set 𝜌𝑣 = 40, 𝜌𝑥 = 5, 𝜉 = 10 in Panel (b) of Figs. 1–4; and set 𝜌𝑣 = 3, 𝜌𝑥 = 1, 𝜉 = 10 in Panel (c) of
Figs. 1–4. In addition, the parameter 𝓁 in the cost function 𝑐(𝜌) = 𝜉𝜌𝓁 is, respectively, taken as 2, 3, 5, and 8 in the four figures.

The effects of network connectedness on traders’ welfare are displayed in Figs. 1–4. Panel (a) of Figs. 1–4 show that traders’
welfare initially increases and eventually decreases with network connectedness, Panel (b) of Figs. 1–4 show that traders’ welfare
strictly increases with network connectedness, and Panel (c) of Figs. 1–4 show that traders’ welfare strictly decreases with network
connectedness.

For the quadratic cost function 𝑐(𝜌) = 𝜉𝜌2, we can numerically calculate that 𝐴(1) > 0 and 𝐴(𝑁) < 0 under the given parameter
values 𝜌𝑣 = 𝜌𝑥 = 5 and 𝜉 = 0.1, that 𝐴(𝑁) > 0 under the values 𝜌𝑣 = 40, 𝜌𝑥 = 5 and 𝜉 = 10, and that 𝐴(1) < 0 under the values 𝜌𝑣 = 3,

9 In Section 4.1, we provide some numerical examples to illustrate that the welfare effects of network connectedness do not highly depend on the form of
uadratic cost functions.
10 When analyzing the welfare effects, the parameter of network connectedness 𝑘 is treated as a continuous variable taking values in [1, 𝑁] to facilitate the

analysis.
11 Due to the complexity of the expressions for welfare and trading volume in Han and Yang (2013), the authors analyze the implications with the help of
5

numerical examples.
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Fig. 1. Welfare effects of network connectedness for cost function 𝑐(𝜌) = 𝜉𝜌2.

Fig. 2. Welfare effects of network connectedness for cost function 𝑐(𝜌) = 𝜉𝜌3.

𝜌𝑥 = 1 and 𝜉 = 10. Then, we can see that the numerical result in Fig. 1 is consistent with the theoretical result in Proposition 3 (ii).
In addition, the numerical results in Figs. 2–4 for the cases of 𝓁 = 3, 𝓁 = 5, and 𝓁 = 8 display a similar pattern to that in Fig. 1 for
the case of 𝓁 = 2; thus, the results in Proposition 3 (ii) do not highly depend on the form of the quadratic cost functions to some
extent. The intuition is that the endogenous signal precision for a higher 𝓁 is lower, so that the endogenous cost for information
acquisition and the welfare are not very sensitive to the parameter 𝓁.

4.2. Public information

This subsection considers an extended setting where each trader can also observe a public signal related to the asset payoff
besides his/her private signal. We denote the public information as

𝑠 = 𝑣 + 𝜁,

where 𝜁 ∼ 𝑁(0, 1∕𝜌𝜁 ), 𝜌𝜁 > 0, is independent of other random variables in the model. The extended model reduces to the baseline
model when 𝜌𝜁 = 0.

We still consider symmetric linear equilibrium and use a tilde to distinguish the variables here from that in the baseline model.
We can show, in line with Proposition 1, that there exists a unique symmetric linear NREE with endogenous information in which
the equilibrium price takes the same form as (2) with the replacement of 𝑘𝜌𝜖,𝑘 with 𝑘𝜌̃𝜖,𝑘 + 𝜌𝜁

𝑝̃ = 𝛼̃𝑣𝑣 − 𝛼̃𝑥𝑥, (4)

where

𝛼̃𝑣 =
𝜌̃𝜃 + 𝑘𝜌̃𝜖,𝑘 + 𝜌𝜁 , (5)
6

𝜌𝑣 + 𝜌̃𝜃 + 𝑘𝜌̃𝜖,𝑘 + 𝜌𝜁
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Fig. 3. Welfare effects of network connectedness for cost function 𝑐(𝜌) = 𝜉𝜌5.

Fig. 4. Welfare effects of network connectedness for cost function 𝑐(𝜌) = 𝜉𝜌8.

𝛼̃𝑥 =
𝛾 + (𝑘𝜌̃𝜖,𝑘 + 𝜌𝜁 )𝛾−1

𝜌𝑣 + 𝜌̃𝜃 + 𝑘𝜌̃𝜖,𝑘 + 𝜌𝜁
, (6)

𝜌̃𝜃 =
(𝑘𝜌̃𝜖,𝑘 + 𝜌𝜁 )2

𝛾2
𝜌𝑥, (7)

and 𝜌̃𝜖,𝑘 is the unique positive root to the following equation with variable 𝜌̃

2𝑐′(𝜌̃)
[

𝛾2𝜌𝑣 + 𝛾2(𝑘𝜌̃ + 𝜌𝜁 ) + 𝜌𝑥(𝑘𝜌̃ + 𝜌𝜁 )2
]

= 𝛾. (8)

Similar to 𝑧𝑘 defined in the baseline model, let

𝑧̃𝑘 = 𝑘𝜌̃𝜖,𝑘 + 𝜌𝜁 (9)

denote the total information in the extended setting with a public signal. According to (8), we can see that increasing network
connectedness reduces each trader’s incentive for information acquisition, i.e, 𝜕𝜌̃𝜖,𝑘∕𝜕𝑘 < 0, and increasing the total information in
the market, i.e., 𝜕𝑧̃𝑘∕𝜕𝑘 > 0, which are consistent with the results in Proposition 2.

Also, in line with Proposition 3 (i), we can show that increasing network connectedness enhances market efficiency and trading
volume, and increases liquidity if and only if the market is sufficiently informationally efficient in sense that 𝜌̃𝜃 + 2

√

𝜌̃𝜃∕𝜌𝑥 >
𝜌𝑣∕𝛾 + 1∕𝜌𝑥.

We then consider the influence of network connectedness on traders’ welfare, or equivalently, the certainty equivalent. The
certainty equivalent in the presence of public information is given by

𝐶𝐸(𝑘) = 1 log

[

𝜌𝑥𝑧̃2𝑘 + 2𝛾2𝑧̃𝑘 + 𝛾2𝜌𝑣 + 𝛾4𝜌−1𝑥
2 2 2

]

− 𝑐(𝜌̃𝜖,𝑘),
7

2𝛾 𝜌𝑥𝑧̃𝑘 + 𝛾 𝑧̃𝑘 + 𝛾 𝜌𝑣
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and under the assumption 𝑐(𝜌) = 𝜉𝜌2 in the baseline model, we have

𝜕𝐶𝐸(𝑘)
𝜕𝑘

∝ 4𝜉𝛾6𝜌−1𝑥 𝜌̃2𝜖,𝑘 − 8𝜉𝛾4𝜌𝑣𝜌̃2𝜖,𝑘 + 4𝜉𝛾4𝑧̃𝑘𝜌̃2𝜖,𝑘 + 2𝛾𝜌𝑥𝑧̃𝑘𝜌̃𝜖,𝑘 + 3𝛾3𝜌̃𝜖,𝑘 − 2𝛾3𝑧̃𝑘 − 𝛾𝜌𝑥𝑧̃
2
𝑘 + 𝛾3𝜌𝑣 − 𝛾5𝜌−1𝑥

=∶ 𝐴̃(𝑘).

urthermore, we can show that 𝐴̃(𝑘) is strictly decreasing in 𝑘, i.e., 𝜕𝐴̃(𝑘)∕𝜕𝑘 < 0 for any 𝑘 ∈ [1, 𝑁]. Please refer to the Online
Supplemental Material for more details on the proofs of the above conclusions. Thus, similar to Proposition 3 (ii), we also have
the following necessary and sufficient condition in the presence of public information: Increasing network connectedness initially
increases and eventually decreases welfare if and only if 𝐴̃(1) > 0 and 𝐴̃(𝑁) < 0, increases welfare if and only if 𝐴̃(𝑁) ≥ 0, and
ecreases welfare if and only if 𝐴̃(1) ≤ 0.

.3. Imperfect signal sharing

Instead of perfect information sharing, similar to Han and Yang (2013) here we assume that each trader can only receive a noisy
ersion of his/her neighbors’ signals. The signal of trader 𝑖 in group 𝑔 observed by his/her neighbors is denoted by

𝑦𝑖,𝑔 = 𝑠𝑖,𝑔 + 𝜂𝑖,𝑔 ,

here 𝜂𝑖,𝑔 ∼ 𝑁(0, 1∕𝜌𝜂), 𝜌𝜂 > 0, is the noise contained in the shared signals and 𝜂 is independent of all other random variables in the
conomy. We have 𝑦𝑖,𝑔 ∼ 𝑁(0, 1∕𝜌𝑦,𝑘), where 𝜌𝑦,𝑘 =

(

1∕𝜌̂𝜖,𝑘 + 1∕𝜌𝜂
)−1 > 0. The generalized model is the same as the baseline model

xcept that the information sharing among traders is imperfect. We still consider symmetric linear equilibrium, and to distinguish
rom the notations in the baseline model, here we use a hat to denote the variables.

Similar to Proposition 1, we can show that there exists a unique symmetric linear NREE with endogenous information in which
he equilibrium price takes the same form as (2) with the replacement of 𝑘𝜌𝜖,𝑘 with 𝜌̂𝜖,𝑘 + (𝑘 − 1)𝜌𝑦,𝑘,

𝑝̂ = 𝛼̂𝑣𝑣 − 𝛼̂𝑥𝑥, (10)

here

𝛼̂𝑣 =
𝜌̂𝜃 + 𝜌̂𝜖,𝑘 + (𝑘 − 1)𝜌𝑦,𝑘

𝜌𝑣 + 𝜌̂𝜃 + 𝜌̂𝜖,𝑘 + (𝑘 − 1)𝜌𝑦,𝑘
, (11)

𝛼̂𝑥 =
𝛾 + (𝜌̂𝜖,𝑘 + (𝑘 − 1)𝜌𝑦,𝑘)𝜌𝑥𝛾−1

𝜌𝑣 + 𝜌̂𝜃 + 𝜌̂𝜖,𝑘 + (𝑘 − 1)𝜌𝑦,𝑘
, (12)

𝜌̂𝜃 =
(𝜌̂𝜖,𝑘 + (𝑘 − 1)𝜌𝑦,𝑘)2

𝛾2
𝜌𝑥, (13)

and 𝜌̂𝜖,𝑘 is the unique positive root to the following equation with variable 𝜌̂

2𝑐′(𝜌̂)
[

𝛾2𝜌𝑣 + 𝛾2(𝜌̂ + (𝑘 − 1)(1∕𝜌̂ + 1∕𝜌𝜂)−1) + 𝜌𝑥(𝜌̂ + (𝑘 − 1)(1∕𝜌̂ + 1∕𝜌𝜂)−1)2
]

= 𝛾. (14)

Let

𝑧̂𝑘 = 𝜌̂𝜖,𝑘 + (𝑘 − 1)𝜌𝑦,𝑘 = 𝜌̂𝜖,𝑘 +
𝑘 − 1

(𝜌̂𝜖,𝑘)−1 + 𝜌−1𝜂
(15)

denote the total information in the market. Thus, it follows from (14) that increasing network connectedness reduces each trader’s
incentive for information acquisition, i.e., 𝜕𝜌̂𝜖,𝑘∕𝜕𝑘 < 0, and increases the total information in the market, i.e., 𝜕𝑧̂𝑘∕𝜕𝑘 > 0, which
re in line with the results in Proposition 2 in the baseline model.

Similar to Proposition 3 (i) in the baseline model, we can also show that increasing network connectedness improves market
fficiency and trading volume, and enhances the liquidity if and only if the market is sufficiently informationally efficient in sense
hat 𝜌̂𝜃 + 2

√

𝜌̂𝜃∕𝜌𝑥 > 𝜌𝑣∕𝛾 + 1∕𝜌𝑥.
We then analyze the welfare (equivalently, the certainty equivalent) effects of network connectedness. We have the following

form of certainty equivalent

𝐶𝐸(𝑘) = 1
2𝛾

log

[

𝜌𝑥𝑧̂2𝑘 + 2𝛾2𝑧̂𝑘 + 𝛾2𝜌𝑣 + 𝛾4𝜌−1𝑥
𝜌𝑥𝑧̂2𝑘 + 𝛾2𝑧̂𝑘 + 𝛾2𝜌𝑣

]

− 𝑐(𝜌̂𝜖,𝑘).

Under the assumption 𝑐(𝜌) = 𝜉𝜌2 in the baseline model, we further have

𝜕𝐶𝐸(𝑘)
𝜕𝑘

∝ 12𝜉𝛾4𝑧̂𝑘𝜌̂2𝜖,𝑘 + 8𝜉𝛾2𝜌𝑥𝑧̂2𝑘𝜌̂
2
𝜖,𝑘 + 4𝜉𝛾6𝜌−1𝑥 𝜌̂2𝜖,𝑘 + 2𝛾𝜌𝑥𝑧̂𝑘𝜌̂𝜖,𝑘 + 𝛾3𝜌̂𝜖,𝑘 − 𝛾𝜌𝑥𝑧̂

2
𝑘 − 2𝛾3𝑧̂𝑘 − 𝛾5𝜌−1𝑥 + 𝛾3𝜌𝑣

=∶ 𝐴̂(𝑘).

We can show that 𝐴̂(𝑘) is strictly decreasing in 𝑘, i.e., 𝜕𝐴̂(𝑘)∕𝜕𝑘 < 0 for any 𝑘 ∈ [1, 𝑁]. Please refer to the Online Supplemental
Material for more details on the proofs of the above conclusions. Thus, similar to Proposition 3 (ii), we have the following necessary
and sufficient condition in the case of imperfect information sharing: Increasing network connectedness initially increases and
eventually decreases welfare if and only if 𝐴̂(1) > 0 and 𝐴̂(𝑁) < 0, increases welfare if and only if 𝐴̂(𝑁) ≥ 0, and decreases

̂

8

elfare if and only if 𝐴(1) ≤ 0.
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5. Conclusions

We analyze the impact of network connectedness on market equilibrium outcomes in term of market efficiency, liquidity, trading
olume and welfare for a large rational expectations perfectly competitive market in which traders share information with each
ther via a cyclical graph. We find that the implications of information network on market quality with endogenous information
re opposite to that in Han and Yang (2013). More specifically, we show that increasing network connectedness increases the
otal information in the market and trading volume, improves market efficiency, and increases liquidity if and only if the market
s sufficiently informationally efficient. We also provide a necessary and sufficient condition on the monotonicity of welfare over
etwork connectedness. Additionally, we consider three extensions of general information acquisition cost functions, an available
ublic information and imperfect information sharing among traders to illustrate the robustness of the implications in the baseline
odel. An interesting future work is to investigate the effects of network connectedness on market equilibrium outcomes for

mperfectly competitive markets, for example, the economy in Kyle (1989).
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ppendix A

In this appendix, we provide the proofs for all the propositions.

roof of Proposition 1

First, for the exogenous information {𝑠𝑖,𝑔(𝜌𝜖,𝑘)}𝑖=1,…,𝑁 ;𝑔=1,…,∞, following the standard procedures in Hellwig (1980), we can show
hat there exists a unique symmetric linear NREE, and the equilibrium price 𝑝 has the form stated in the proposition.

We now show condition (ii) in Definition 1. We have

E
[

−exp
{

−𝛾
[

𝑑∗𝑖,𝑔(𝜌)(𝑣 − 𝑝) − 𝑐(𝜌)
]}]

= −

√

√

√

√

𝑒2𝛾𝑐(𝜌) Var
[

𝑣||
|

𝑠𝑗,𝑔 , 𝑗 ∈ 𝑖,𝑔 , 𝑝
]

Var(𝑣 − 𝑝)
(A.1)

= −

√

1
Var(𝑣 − 𝑝)

𝑒2𝛾𝑐(𝜌)
𝜌𝑣 + 𝜌𝜃 + (𝑘 − 1)𝜌𝜖,𝑘 + 𝜌

, (A.2)

where (A.1) follows from (A.7) in Lou and Wang (2021), and (A.2) from (2) and the projection theorem for normal random variables.
From (1) and (A.2), it suffices to show that there exists 𝜌𝜖,𝑘 > 0 such that 𝑒2𝛾𝑐(𝜌)

𝜌𝑣+𝜌𝜃+(𝑘−1)𝜌𝜖,𝑘+𝜌
achieves its minimum value at 𝜌 = 𝜌𝜖,𝑘.

We have

𝜕
[

𝑒2𝛾𝑐(𝜌)

𝜌𝑣+𝜌𝜃+(𝑘−1)𝜌𝜖,𝑘+𝜌

]

𝜕𝜌
=

𝑒2𝛾𝑐(𝜌)𝐻(𝜌)
(𝜌𝑣 + 𝜌𝜃 + (𝑘 − 1)𝜌𝜖,𝑘 + 𝜌)2

,

where 𝐻(𝜌) = 2𝛾𝑐′(𝜌)(𝜌𝑣 + 𝜌𝜃 + (𝑘 − 1)𝜌𝜖,𝑘 + 𝜌) − 1, and then

𝜕2
[

𝑒2𝛾𝑐(𝜌)

𝜌𝑣+𝜌𝜃+(𝑘−1)𝜌𝜖,𝑘+𝜌

]

𝜕𝜌2
=

𝜕
[

𝑒2𝛾𝑐(𝜌)𝐻(𝜌)
(𝜌𝑣+𝜌𝜃+(𝑘−1)𝜌𝜖,𝑘+𝜌)2

]

𝜕𝜌

=

[

2𝛾𝑐′′(𝜌)𝑒2𝛾𝑐(𝜌) + 4𝛾2(𝑐′(𝜌))2𝑒2𝛾𝑐(𝜌)
]

𝜌𝑣 + 𝜌𝜃 + (𝑘 − 1)𝜌𝜖,𝑘 + 𝜌
−

2𝛾𝑐′(𝜌)𝑒2𝛾𝑐(𝜌)

(𝜌𝑣 + 𝜌𝜃 + (𝑘 − 1)𝜌𝜖,𝑘 + 𝜌)2

−
2𝛾𝑐′(𝜌)𝑒2𝛾𝑐(𝜌)

(𝜌𝑣 + 𝜌𝜃 + (𝑘 − 1)𝜌𝜖,𝑘 + 𝜌)2
+ 2𝑒2𝛾𝑐(𝜌)

(𝜌𝑣 + 𝜌𝜃 + (𝑘 − 1)𝜌𝜖,𝑘 + 𝜌)3

∝ (𝜌𝑣 + 𝜌𝜃 + (𝑘 − 1)𝜌𝜖,𝑘 + 𝜌)2
[

2𝛾𝑐′′(𝜌) + 4𝛾2𝑐′2(𝜌)
]

− 4𝛾𝑐′(𝜌)(𝜌𝑣 + 𝜌𝜃 + (𝑘 − 1)𝜌𝜖,𝑘 + 𝜌) + 2

= 2𝛾𝑐′′(𝜌)(𝜌𝑣 + 𝜌𝜃 + (𝑘 − 1)𝜌𝜖,𝑘 + 𝜌)2 +
[

2𝛾𝑐′(𝜌)(𝜌𝑣 + 𝜌𝜃 + (𝑘 − 1)𝜌𝜖,𝑘 + 𝜌) − 1
]2 + 1

> 0,

where the inequality follows from the fact that 𝑐′′(⋅) ≥ 0 for a twice continuously differentiable convex function 𝑐(⋅). Thus,
𝑒2𝛾𝑐(𝜌)

𝜌𝑣+𝜌𝜃+(𝑘−1)𝜌𝜖,𝑘+𝜌
is a convex function of 𝜌. Moreover, it tends to ∞ as 𝜌 → ∞; hence, the value at which function 𝑒2𝛾𝑐(𝜌)

𝜌𝑣+𝜌𝜃+(𝑘−1)𝜌𝜖,𝑘+𝜌
achieves its minimum exists and is unique. Consequently, it suffices to show that there exists 𝜌𝜖,𝑘 > 0 such that

𝜕
[

𝑒2𝛾𝑐(𝜌)

𝜌𝑣+𝜌𝜃+(𝑘−1)𝜌𝜖,𝑘+𝜌

]

𝜕𝜌

|

|

|

|

|𝜌=𝜌𝜖,𝑘

= 0,
9

i.e., 𝐻(𝜌𝜖,𝑘) = 0, or, equivalently, (3) holds with 𝜌 = 𝜌𝜖,𝑘.
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From the condition 𝑐′(0) = 0 and twice-continuous differentiability of 𝑐(⋅), we see that the left-hand side of (3) is continuous in
, with limit zero as 𝜌 → 0, and infinity as 𝜌 → ∞. Hence, there exists some 𝜌𝜖,𝑘 > 0 such that (3) holds by applying the intermediate
alue theorem. Furthermore, because the function 𝑐′(⋅) is non-decreasing (from the convexity of 𝑐(⋅)), it follows from the strict
ncreasingness of 𝑐(⋅) that 𝑐′(𝜌) > 0 for any 𝜌 > 0. Hence, the positive solution to (3) and then the symmetric linear equilibrium is
nique. This completes the proof. □

roof of Proposition 2

This follows directly from Eq. (3). □

roof of Proposition 3

Recall that we have shown in Proposition 2 that 𝑧𝑘 = 𝑘𝜌𝜖,𝑘 increases with 𝑘. We first show part (i). From (2), we see that

1
Var[𝑣|𝑝]

= 𝜌𝑣 + 𝜌𝜃 = 𝜌𝑣 +
𝑧2𝑘𝜌𝑥
𝛾2

,

which increases with 𝑘. The liquidity is given by

1
𝛼𝑥

=
𝑧𝑘

(

𝜌𝑣 + 𝜌𝜃 + 𝑧𝑘
)

𝛾
(

𝜌𝜃 + 𝑧𝑘
) .

lementary computation shows that 𝜕(1∕𝛼𝑥)∕𝜕𝑘 > 0 if and only if 𝜌𝜃 + 2
√

𝜌𝜃∕𝜌𝑥 > 𝜌𝑣∕𝛾 + 1∕𝜌𝑥. The trading volume is expressed as
follows:

E|𝑑∗𝑖,𝑔| =
√

2
𝜋
Var(𝑑∗𝑖,𝑔)

=
√

2
𝜋

√

Var
(E[𝑣 − 𝑝|𝑖,𝑔]
𝛾 Var[𝑣|𝑖,𝑔]

)

=

√

2∕𝜋
𝛾 Var[𝑣|𝑖,𝑔]

√

Var(𝑣 − 𝑝) − Var[𝑣|𝑖,𝑔]

=

√

2∕𝜋
(

𝜌𝑣 + 𝜌𝜃 + 𝑧𝑘
)

𝛾

√

𝛾2𝜌𝑣 + (𝛾2 + 𝑧𝑘𝜌𝑥)2𝜌−1𝑥
𝛾2(𝜌𝑣 + 𝜌𝜃 + 𝑧𝑘)2

− 1
𝜌𝑣 + 𝜌𝜃 + 𝑧𝑘

=

√

2∕𝜋
𝛾

√

𝑧𝑘 + 𝛾2𝜌−1𝑥 , (A.3)

where the first equality follows from the formula that E|𝑦| =
√

2𝜎2∕𝜋 if 𝑦 ∼ 𝑁(0, 𝜎2), the second one from the optimal demand
trategy 𝑑∗𝑖,𝑔 = E[𝑣|𝑖,𝑔 ]−𝑝

𝛾 Var[𝑣|𝑖,𝑔 ]
, the third one from the law of total variance, and the fourth one from (2). Hence, it follows from (A.3)

that trading volume increases with 𝑘.
We now show part (ii). For simplicity, we consider the certainty equivalent instead of the welfare. We have

E
[

𝑈 (𝑑∗𝑖,𝑔(𝑣 − 𝑝) − 𝑐(𝜌𝜖,𝑘))
]

= −𝑒𝛾𝑐(𝜌𝜖,𝑘)
√

1
𝜌𝑣 + 𝜌𝜃 + 𝑘𝜌𝜖,𝑘

1
(1 − 𝛼𝑣)2𝜌−1𝑣 + 𝛼2𝑥𝜌−1𝑥

= −𝑒𝛾𝑐(𝜌𝜖,𝑘)
√

√

√

√1 −
𝛾4𝜌−1𝑥 + 𝛾2𝑧𝑘

𝜌𝑥𝑧2𝑘 + 2𝛾2𝑧𝑘 + 𝛾2𝜌𝑣 + 𝛾4𝜌−1𝑥
, (A.4)

where the first equality follows from (2) and (A.2), and (A.4) follows from the expressions of 𝛼𝑣 and 𝛼𝑥 given in Proposition 1. Then,
from (A.4), the certainty equivalent equals

𝐶𝐸(𝑘) ∶= −1
𝛾
log

[

E
(

exp
{

−𝛾𝑑∗𝑖,𝑔(𝑣 − 𝑝)
})]

− 𝑐(𝜌𝜖,𝑘)

= 1
2𝛾

log

[

𝜌𝑥𝑧2𝑘 + 2𝛾2𝑧𝑘 + 𝛾2𝜌𝑣 + 𝛾4𝜌−1𝑥
𝜌𝑥𝑧2𝑘 + 𝛾2𝑧𝑘 + 𝛾2𝜌𝑣

]

− 𝑐(𝜌𝜖,𝑘). (A.5)

We complete the proof by showing that 𝜕𝐶𝐸(𝑘)∕𝜕𝑘 ∝ 𝐴𝑘 given in the proposition, and 𝐴𝑘 strictly decreases with 𝑘. From (3)
and (A.5), we have

𝐶𝐸(𝑘) =
[

1
2𝛾

log
(

𝜌𝑥𝑧
2
𝑘 + 2𝛾2𝑧𝑘 + 𝛾2𝜌𝑣 + 𝛾4𝜌−1𝑥

)

]

−
[

1
2𝛾

log
(

𝛾
2𝑐′(𝜌𝜖,𝑘)

)

+ 𝑐(𝜌𝜖,𝑘)
]

=∶ 𝐹1(𝑘) − 𝐹2(𝑘).

hen,
𝜕𝐶𝐸(𝑘)

=
𝜕𝐹1(𝑘) 𝜕𝑧𝑘 −

𝜕𝐹2(𝑘) 𝜕𝜌𝜖,𝑘
10

𝜕𝑘 𝜕𝑧𝑘 𝜕𝑘 𝜕𝜌𝜖,𝑘 𝜕𝑘
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S

= 1
2𝛾

2𝜌𝑥𝑧𝑘 + 2𝛾2

𝜌𝑥𝑧2𝑘 + 2𝛾2𝑧𝑘 + 𝛾2𝜌𝑣 + 𝛾4𝜌−1𝑥

𝜕𝑧𝑘
𝜕𝑘

−
[

−
𝑐′′(𝜌𝜖,𝑘)
2𝛾𝑐′(𝜌𝜖,𝑘)

+ 𝑐′(𝜌𝜖,𝑘)
] 𝜕𝜌𝜖,𝑘

𝜕𝑘

= 1
2𝛾

2𝜌𝑥𝑧𝑘 + 2𝛾2

𝜌𝑥𝑧2𝑘 + 2𝛾2𝑧𝑘 + 𝛾2𝜌𝑣 + 𝛾4𝜌−1𝑥

(

𝜌𝜖,𝑘 + 𝑘
𝜕𝜌𝜖,𝑘
𝜕𝑘

)

−
[

−
𝑐′′(𝜌𝜖,𝑘)
2𝛾𝑐′(𝜌𝜖,𝑘)

+ 𝑐′(𝜌𝜖,𝑘)
] 𝜕𝜌𝜖,𝑘

𝜕𝑘
. (A.6)

Taking the derivative of both sides of (3) with the identity 𝜌 = 𝜌𝜖,𝑘 with respect to 𝑘 leads to

2𝛾2𝜌𝑣𝑐′′(𝜌𝜖,𝑘)
𝜕𝜌𝜖,𝑘
𝜕𝑘

+ 2𝛾2𝑐′(𝜌𝜖,𝑘)𝜌𝜖,𝑘 + 2𝛾2𝑘
[

𝑐′′(𝜌𝜖,𝑘)𝜌𝜖,𝑘 + 𝑐′(𝜌𝜖,𝑘)
] 𝜕𝜌𝜖,𝑘

𝜕𝑘
+ 4𝑐′(𝜌𝜖,𝑘)𝜌𝑥𝑘𝜌2𝜖,𝑘

+ 2𝜌𝑥𝑘2
[

𝑐′′(𝜌𝜖,𝑘)𝜌2𝜖,𝑘 + 2𝑐′(𝜌𝜖,𝑘)𝜌𝜖,𝑘
] 𝜕𝜌𝜖,𝑘

𝜕𝑘
= 0,

from which and the assumption 𝑐(𝜌) = 𝜉𝜌2, we have

𝜕𝜌𝜖,𝑘
𝜕𝑘

= −
𝛾2𝜌2𝜖,𝑘 + 2𝜌𝑥𝑘𝜌3𝜖,𝑘

𝛾2𝜌𝑣 + 2𝛾2𝑘𝜌𝜖,𝑘 + 3𝜌𝑥𝑘2𝜌2𝜖,𝑘
. (A.7)

Substituting (A.7) into (A.6) and noting 𝑐(𝜌) = 𝜉𝜌2 again, we obtain
𝜕𝐶𝐸(𝑘)

𝜕𝑘
∝ 4𝜉𝛾4𝑘𝜌3𝜖,𝑘 + (2𝛾𝜌𝑥𝑘 + 4𝜉𝛾6𝜌−1𝑥 − 𝛾𝜌𝑥𝑘

2 − 8𝜉𝛾4𝜌𝑣)𝜌2𝜖,𝑘 + 𝛾3(3 − 2𝑘)𝜌𝜖,𝑘 + 𝛾3𝜌𝑣 − 𝛾5𝜌−1𝑥

=∶ 𝐴(𝑘).

Next, we show that 𝜕𝐴(𝑘)∕𝜕𝑘 < 0 for any 𝑘 ∈ [1, 𝑁]. First, we have

𝜕𝐴(𝑘)
𝜕𝑘

=
[

12𝜉𝛾4𝑘𝜌2𝜖,𝑘 + 4𝛾𝜌𝑥𝑘𝜌𝜖,𝑘 + 8𝜉𝛾6𝜌−1𝑥 𝜌𝜖,𝑘 − 2𝛾𝜌𝑥𝑘2𝜌𝑣 − 16𝜉𝛾4𝜌𝑣𝜌𝜖,𝑘 + 𝛾3(3 − 2𝑘)
] 𝜕𝜌𝜖,𝑘

𝜕𝑘
+ 4𝜉𝛾4𝜌3𝜖,𝑘 + 2𝛾𝜌𝑥𝜌2𝜖,𝑘 − 2𝛾𝜌𝑥𝑘𝜌2𝜖,𝑘 − 2𝛾3𝜌𝜖,𝑘.

ubstituting the expression of 𝜕𝜌𝜖,𝑘∕𝜕𝑘 in (A.7) into the preceding equation leads to

𝜕𝐴(𝑘)
𝜕𝑘

= −
𝛾2𝜌2𝜖,𝑘 + 2𝜌𝑥𝑘𝜌3𝜖,𝑘

𝛾2𝜌𝑣 + 2𝛾2𝑘𝜌𝜖,𝑘 + 3𝜌𝑥𝑘2𝜌2𝜖,𝑘

[

12𝜉𝛾4𝑘𝜌2𝜖,𝑘 + 4𝛾𝜌𝑥𝑘𝜌𝜖,𝑘 + 8𝜉𝛾6𝜌−1𝑥 𝜌𝜖,𝑘 − 2𝛾𝜌𝑥𝑘2𝜌𝑣 − 16𝜉𝛾4𝜌𝑣𝜌𝜖,𝑘 + 𝛾3(3 − 2𝑘)
]

+ 4𝜉𝛾4𝜌3𝜖,𝑘 + 2𝛾𝜌𝑥𝜌2𝜖,𝑘 − 2𝛾𝜌𝑥𝑘𝜌2𝜖,𝑘 − 2𝛾3𝜌𝜖,𝑘

= − 1
𝛾2𝜌𝑣 + 2𝛾2𝑘𝜌𝜖,𝑘 + 3𝜌𝑥𝑘2𝜌2𝜖,𝑘

[

12𝜉𝛾6𝑘𝜌4𝜖,𝑘 + 24𝜉𝛾4𝜌𝑥𝑘2𝜌5𝜖,𝑘 + 4𝛾3𝜌𝑥𝑘𝜌3𝜖,𝑘 + 8𝛾𝜌2𝑥𝑘
2𝜌4𝜖,𝑘 + 8𝜉𝛾8𝜌−1𝑥 𝜌3𝜖,𝑘 + 16𝜉𝛾6𝑘𝜌4𝜖,𝑘

− 2𝛾3𝜌𝑥𝑘2𝜌3𝜖,𝑘 − 4𝛾𝜌2𝑥𝑘
3𝜌4𝜖,𝑘 − 16𝜉𝛾6𝜌𝑣𝜌3𝜖,𝑘 − 32𝜉𝛾4𝜌𝑥𝜌𝑣𝑘𝜌4𝜖,𝑘 + 3𝛾5𝜌2𝜖,𝑘 − 2𝛾5𝑘𝜌2𝜖,𝑘 + 6𝛾3𝜌𝑥𝑘𝜌3𝜖,𝑘 − 4𝛾3𝜌𝑥𝑘2𝜌3𝜖,𝑘

]

+ 4𝜉𝛾4𝜌3𝜖,𝑘 + 2𝛾𝜌𝑥𝜌2𝜖,𝑘 − 2𝛾𝜌𝑥𝑘𝜌2𝜖,𝑘 − 2𝛾3𝜌𝜖,𝑘

=∶ − 1
𝛾2𝜌𝑣 + 2𝛾2𝑘𝜌𝜖,𝑘 + 3𝜌𝑥𝑘2𝜌2𝜖,𝑘

𝐵(𝑘),

where

𝐵(𝑘) = 12𝜉𝛾6𝑘𝜌4𝜖,𝑘 + 24𝜉𝛾4𝜌𝑥𝑘2𝜌5𝜖,𝑘 + 4𝛾3𝜌𝑥𝑘𝜌3𝜖,𝑘 + 8𝛾𝜌2𝑥𝑘
2𝜌4𝜖,𝑘 + 8𝜉𝛾8𝜌−1𝑥 𝜌3𝜖,𝑘 + 16𝜉𝛾6𝑘𝜌4𝜖,𝑘 − 2𝛾3𝜌𝑥𝑘2𝜌3𝜖,𝑘 − 4𝛾𝜌2𝑥𝑘

3𝜌4𝜖,𝑘
− 16𝜉𝛾6𝜌𝑣𝜌3𝜖,𝑘 − 32𝜉𝛾4𝜌𝑥𝜌𝑣𝑘𝜌4𝜖,𝑘 + 3𝛾5𝜌2𝜖,𝑘 − 2𝛾5𝑘𝜌2𝜖,𝑘 + 6𝛾3𝜌𝑥𝑘𝜌3𝜖,𝑘 − 4𝛾3𝜌𝑥𝑘2𝜌3𝜖,𝑘 − 4𝜉𝛾6𝜌𝑣𝜌3𝜖,𝑘 − 2𝛾3𝜌𝑥𝜌𝑣𝜌2𝜖,𝑘
+ 2𝛾3𝜌𝑥𝜌𝑣𝑘𝜌2𝜖,𝑘 + 2𝛾5𝜌𝑣𝜌𝜖,𝑘 − 8𝜉𝛾6𝑘𝜌4𝜖,𝑘 − 4𝛾3𝜌𝑥𝑘𝜌3𝜖,𝑘 + 4𝛾3𝜌𝑥𝑘2𝜌3𝜖,𝑘 + 4𝛾5𝑘𝜌2𝜖,𝑘 − 12𝜉𝛾4𝜌𝑥𝑘2𝜌5𝜖,𝑘 − 6𝛾𝜌2𝑥𝑘

2𝜌4𝜖,𝑘
+ 6𝛾𝜌2𝑥𝑘

3𝜌4𝜖,𝑘 + 6𝛾3𝜌𝑥𝑘2𝜌3𝜖,𝑘.

We can further simplify 𝐵(𝑘) as follows:

𝐵(𝑘) = 12𝜉𝛾4𝜌𝑥𝑘2𝜌5𝜖,𝑘 + 20𝜉𝛾6𝑘𝜌4𝜖,𝑘 + 2𝛾𝜌2𝑥𝑘
3𝜌4𝜖,𝑘 + 2𝛾𝜌2𝑥𝑘

2𝜌4𝜖,𝑘 − 32𝜉𝛾4𝜌𝑥𝜌𝑣𝑘𝜌4𝜖,𝑘 + 6𝛾3𝜌𝑥𝑘𝜌3𝜖,𝑘 + 4𝛾3𝜌𝑥𝑘2𝜌3𝜖,𝑘 − 20𝜉𝛾6𝜌𝑣𝜌3𝜖,𝑘
+ 8𝜉𝛾8𝜌−1𝑥 𝜌3𝜖,𝑘 + 2𝛾5𝑘𝜌2𝜖,𝑘 + 3𝛾5𝜌2𝜖,𝑘 + 2𝛾3𝜌𝑥𝜌𝑣𝜌2𝜖,𝑘(𝑘 − 1) + 2𝛾5𝜌𝑣𝜌𝜖,𝑘. (A.8)

Then, from (3), we have

−4𝜉𝛾2𝜌𝑣𝜌𝜖,𝑘 = 4𝜉𝛾2𝑘𝜌2𝜖,𝑘 + 4𝜉𝜌𝑥𝑘2𝜌3𝜖,𝑘 − 𝛾.

As a result,

− 32𝜉𝛾4𝜌𝑣𝜌𝑥𝑘𝜌4𝜖,𝑘 = 8𝛾2𝜌𝑥𝑘𝜌3𝜖,𝑘(−4𝜉𝛾
2𝜌𝑣𝜌𝜖,𝑘)

= 8𝛾2𝜌𝑥𝑘𝜌3𝜖,𝑘(4𝜉𝛾
2𝑘𝜌2𝜖,𝑘 + 4𝜉𝜌𝑥𝑘2𝜌3𝜖,𝑘 − 𝛾)

= 32𝜉𝛾4𝜌𝑥𝑘2𝜌5𝜖,𝑘 + 32𝜉𝛾2𝜌2𝑥𝑘
3𝜌6𝜖,𝑘 − 8𝛾3𝜌𝑥𝑘𝜌3𝜖,𝑘, (A.9)
11
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and

− 20𝜉𝛾6𝜌𝑣𝜌3𝜖,𝑘 = 5𝛾4𝜌2𝜖,𝑘(−4𝜉𝛾
2𝜌𝑣𝜌𝜖,𝑘)

= 5𝛾4𝜌2𝜖,𝑘(4𝜉𝛾
2𝑘𝜌2𝜖,𝑘 + 4𝜉𝜌𝑥𝑘2𝜌3𝜖,𝑘 − 𝛾)

= 20𝜉𝛾6𝑘𝜌4𝜖,𝑘 + 20𝜉𝛾4𝜌𝑥𝑘2𝜌5𝜖,𝑘 − 5𝛾5𝜌2𝜖,𝑘. (A.10)

Substituting (A.9) and (A.10) into (A.8), we have

𝐵(𝑘) = 32𝜉𝛾2𝜌2𝑥𝑘
3𝜌6𝜖,𝑘 + 64𝜉𝛾4𝜌𝑥𝑘2𝜌5𝜖,𝑘 + 40𝜉𝛾6𝑘𝜌4𝜖,𝑘 + 2𝛾𝜌2𝑥𝑘

3𝜌4𝜖,𝑘 + 2𝛾𝜌2𝑥𝑘
2𝜌4𝜖,𝑘 + 4𝛾3𝜌𝑥𝑘2𝜌3𝜖,𝑘 − 2𝛾3𝜌𝑥𝑘𝜌3𝜖,𝑘 + 8𝜉𝛾8𝜌−1𝑥 𝜌3𝜖,𝑘

+ 2𝛾5𝑘𝜌2𝜖,𝑘 − 2𝛾5𝜌2𝜖,𝑘 + 2𝛾3𝜌𝑥𝜌𝑣𝜌2𝜖,𝑘(𝑘 − 1) + 2𝛾5𝜌𝑣𝜌𝜖,𝑘

= 32𝜉𝛾2𝜌2𝑥𝑘
3𝜌6𝜖,𝑘 + 64𝜉𝛾4𝜌𝑥𝑘2𝜌5𝜖,𝑘 + 40𝜉𝛾6𝑘𝜌4𝜖,𝑘 + 2𝛾𝜌2𝑥𝑘

3𝜌4𝜖,𝑘 + 2𝛾𝜌2𝑥𝑘
2𝜌4𝜖,𝑘 + 2𝛾3𝜌𝑥𝑘2𝜌3𝜖,𝑘 + 2𝛾3𝜌𝑥𝑘𝜌3𝜖,𝑘(𝑘 − 1)

+ 8𝜉𝛾8𝜌−1𝑥 𝜌3𝜖,𝑘 + 2𝛾5𝑘𝜌2𝜖,𝑘(𝑘 − 1) + 2𝛾3𝜌𝑥𝜌𝑣𝜌2𝜖,𝑘(𝑘 − 1) + 2𝛾5𝜌𝑣𝜌𝜖,𝑘

> 0.

This competes the proof. □

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.najef.2023.102015.
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